You have the correct answer. It is choice B) -1/4
=======================================================
Explanation:
This is because we're adding -1/4 to each term to get the next one. In other words, we're subtracting 1/4 from each term to get the next one.
- term2 = term1+(d) = 1/2 + (-1/4) = 1/2 - 1/4 = 2/4 - 1/4 = 1/4
- term3 = term2+(d) = 1/4 + (-1/4) = 1/4 - 1/4 = 0
- term4 = term3+(d) = 0 + (-1/4) = 0 - 1/4 = -1/4
- term5 = term4+(d) = -1/4 + (-1/4) = -2/4 = -1/2
and so on.
----------
To find the common difference, all we have to do is subtract any term from its previous one.
For example:
d = (term2) - (term1)
d = (1/4) - (1/2)
d = (1/4) - (2/4)
d = (1-2)/4
d = -1/4
The order of subtraction matters, so we cannot say d = term1-term2.
2/5 = 42
1/5 = 21
5/5 = 105
105 students in the class
Answer:
Do you want to be extremely boring?
Since the value is 2 at both 0 and 1, why not make it so the value is 2 everywhere else?
is a valid solution.
Want something more fun? Why not a parabola?
.
At this point you have three parameters to play with, and from the fact that
we can already fix one of them, in particular
. At this point I would recommend picking an easy value for one of the two, let's say
(or even
, it will just flip everything upside down) and find out b accordingly:
Our function becomes
Notice that it works even by switching sign in the first two terms: 
Want something even more creative? Try playing with a cosine tweaking it's amplitude and frequency so that it's period goes to 1 and it's amplitude gets to 2: 
Since cosine is bound between -1 and 1, in order to reach the maximum at 2 we need
, and at that point the first condition is guaranteed; using the second to find k we get 

Or how about a sine wave that oscillates around 2? with a similar reasoning you get

Sky is the limit.
Answer:

Step-by-step explanation:
Since, the surface area of a cylinder,
................(1)
Where,
r = radius,
h = height,
If 



( by middle term splitting )


By zero product property,
r = 3 or r = - 6 ( not possible )
Thus, radius, r = 3 meters,
Now, differentiating equation (1) with respect to t ( time ),

∵ h = constant, ⇒ dh/dt = 0,

We have,




Now,
Volume of a cylinder,

Differentiating w. r. t. t,
