Answer:
C.It is a one-tailed test since the alternative hypothesis states that the parameter is greater than the hypothesized value.
Step-by-step explanation:
Let p be the percentage of students enrolled in an introductory Chemistry class dropped before the midterm. Then null and alternative hypotheses are:
: p=10%
: p>10%
The alternative hypothesis states that the parameter is greater than the hypothesized value.
There are 651.335 million cells in the petri dish after 11 hours and the cells will reach 1 billion cells after 14.068 hours
<h3>How to determine the number of cells after 11 hours?</h3>
The given parameters are:
At t = 0, Bacteria = 140 million
At t = 6, Bacteria = 320 million
This can be represented as:
f(0) = 140
f(6) = 320
An exponential function is represented as:
f(t) = f(0) * r^t
When t = 6, we have:
320 = 140 * r^6
Divide both sides by 140
r^6 = 2.28571428571
Take the 6th root of both sides
r = 1.15
So, we have:
f(t) = f(0) * 1.15^t
Substitute f(0) = 140
f(t) = 140 * 1.15^t
After 11 hours, we have:
f(11) = 140 * 1.15^11
Evaluate
f(11) = 651.33
Hence, there are 651.335 million cells in the petri dish after 11 hours
Time to reach 1 billion cells
This means that
f(t) = 1 billion i.e. 1000 million
So, we have:
1000 = 140 * 1.15^t
Divide by 140
1.15^t = 7.14285714286
Take the logarithm of both sides
t * log(1.15) = log(7.14285714286)
Divide both sides by log(1.15)
t = 14.068
Hence, the cells will reach 1 billion cells after 14.068 hours
Read more about exponential functions at:
brainly.com/question/2456547
#SPJ1
Answer:
f(g(x)) = 4x² + 16x + 13
Step-by-step explanation:
Given the composition of functions f(g(x)), for which f(x) = 4x + 5, and g(x) = x² + 4x + 2.
<h3><u>Definitions:</u></h3>
- The <u>polynomial in standard form</u> has terms that are arranged by <em>descending</em> order of degree.
- In the <u>composition of function</u><em> f </em>with function <em>g</em><em>, </em>which is alternatively expressed as <em>f </em>° <em>g,</em> is defined as (<em>f </em> ° <em>g</em>)(x) = f(g(x)).
In evaluating composition of functions, the first step is to evaluate the inner function, g(x). Then, we must use the derived value from g(x) as an input into f(x).
<h3><u>Solution:</u></h3>
Since we are not provided with any input values to evaluate the given composition of functions, we can express the given functions as follows:
f(x) = 4x + 5
g(x) = x² + 4x + 2
f(g(x)) = 4(x² + 4x + 2) + 5
Next, distribute 4 into the parenthesis:
f(g(x)) = 4x² + 16x + 8 + 5
Combine constants:
f(g(x)) = 4x² + 16x + 13
Therefore, f(g(x)) as a polynomial in <em>x</em> that is written in standard form is: 4x² + 16x + 13.
Answer:
d^2 = 30^2 + 12^2
e^2 = d^2 + 8^2
e^2 = 30^2 + 12^2 + 8^2
e = √(30^2 + 12^2 + 8^2) = 33.3 ft
The first one is wrong
(do you need help solving it?)