Answer:
yeah i dont know this one i tried to do it but i came up with a crazy answer
You need to find the slope
251-248. 3
------------- = --------
2005-1965. 40
Answer:
320 cm²
Step-by-step explanation:
If 3 units = 12cm
Then 1 unit = 12/3 = 4cm
Formula for Area Trapezoid = height*(base1+base2)/2
Base 1 = 12
Base 2 = 7 * 4 = 28
12 + 28 = 40
40 * (4*4) = 40 * 16 = 640
640 / 2 = 320
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
To find the area of the trapezoid we need to find the height of the trapezoid.
<h2>Trapezoid</h2>
A trapezoid is a quadrilateral which is having a pair of opposite sides as parallel and the length of the parallel sides is not equal.
<h2>Area of Trapezoid</h2>
The area of a trapezoid is given as half of the product of the height(altitude) of the trapezoid and the sum of the length of the parallel sides.
\rm{ Area\ of\ trapezoid = \dfrac{1} {2}\times height \times (Sum\ of the\ parallel\ Sides)
The area of the trapezoid is 54 units².
<h2> Given to us :</h2>
ABCD is a trapezoid
AD=10, BC = 8,
CK is the altitude altitude
Area of ∆ACD = 30
<h2>Area of ∆ACD,</h2>
In ∆ACD,
\begin{gathered}\rm { Area\ \triangle ACD = \dfrac{1}{2}\times base\times height\\\\\ \end{gathered}
Substituting the values,
30 = 1/2 * AD × CK
30 = 1/2 * 10 × CK
(30 * 2)/10 = CK
CK = 6 units
<h2 /><h2>Area of Trapezoid ABCD</h2>
\rm{ Area\ of\ trapezoid = \dfrac{1} {2}\times height \times (Sum\ of\ the\ parallell Sides)
Area ABCD = 
Area ABCD = 
Area ABCD = 
Area ABCD = 54 units²
Hence, the area of the trapezoid is 54 units².
The answer in this problem that you just have us is C