1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
3 years ago
14

Enter the ordered pair that is the solution to the system of equations graphed below.

Mathematics
1 answer:
dalvyx [7]3 years ago
6 0

Answer:

x = 5/2

y = -1/2

Step-by-step explanation:

if both equations start with 'y=' then set the expressions equal to each other

3/5x - 1 = x - 3

add 1 to each side to get:

3/5x = x - 1

subtract 5/5x from each side:

3/5x - 5/5x = -1

-2/5x = -1

multiply each side by -5/2:

x = 5/2

y = 2 1/2 - 3

y = -1/2

You might be interested in
NEED HELP ASAP, WILL GIVE BRAINLIEST
Svetlanka [38]
Domain: [-5, 5)
range:(-4,4]
hope this helps
5 0
3 years ago
Question
Fantom [35]

Answer:

a. More than one pie

Step-by-step explanation:

2/3 + 3/4

8/12 + 9/12 = 17/12

17/12 = 1 5/12

3 0
3 years ago
Please I need your help ASAP
dolphi86 [110]

Answer:

D

Step-by-step explanation:

B has a y-intercept of 4, greater than A's y-intercept of -4. This means that D is correct.

7 0
3 years ago
Read 2 more answers
Give the following equations determine if the lines are parallel perpendicular or neither
GaryK [48]

In order to determine whether the equations are parallel, perpendicular, or neither, let's simply each equation into a slope-intercept form or basically, solve for y.

Let's start with the first equation.

\frac{6x-5y}{2}=x+1

Cross multiply both sides of the equation.

6x-5y=2(x+1)6x-5y=2x+2

Subtract 6x on both sides of the equation.

6x-5y-6x=2x+2-6x-5y=-4x+2

Divide both sides of the equation by -5.

-\frac{5y}{-5}=\frac{-4x}{-5}+\frac{2}{-5}y=\frac{4}{5}x-\frac{2}{5}

Therefore, the slope of the first equation is 4/5.

Let's now simplify the second equation.

-4y-x=4x+5

Add x on both sides of the equation.

-4y-x+x=4x+5+x-4y=5x+5

Divide both sides of the equation by -4.

\frac{-4y}{-4}=\frac{5x}{-4}+\frac{5}{-4}y=-\frac{5}{4}x-\frac{5}{4}

Therefore, the slope of the second equation is -5/4.

Since the slope of each equation is the negative reciprocal of each other, then the graph of the two equations is perpendicular to each other.

5 0
1 year ago
Find the derivative of
kirill [66]

Answer:

\displaystyle y'(1, \frac{3}{2}) = -3

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \frac{3}{2x^2}<u />

\displaystyle \text{Point} \ (1, \frac{3}{2})

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Rewrite]:                                            \displaystyle y = \frac{3}{2}x^{-2}
  2. Basic Power Rule:                                                                                             \displaystyle y' = -2 \cdot \frac{3}{2}x^{-2 - 1}
  3. Simplify:                                                                                                             \displaystyle y' = -3x^{-3}
  4. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = \frac{-3}{x^3}

<u>Step 3: Solve</u>

  1. Substitute in coordinate [Derivative]:                                                              \displaystyle y'(1, \frac{3}{2}) = \frac{-3}{1^3}
  2. Evaluate exponents:                                                                                         \displaystyle y'(1, \frac{3}{2}) = \frac{-3}{1}
  3. Divide:                                                                                                               \displaystyle y'(1, \frac{3}{2}) = -3

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • 3х - бу = -24<br>how do I get the x and y intercepts?​
    13·1 answer
  • Help do this 868÷4 657÷2. 8473÷7 using long division
    9·2 answers
  • Step by step explanation
    8·1 answer
  • Find the number, if 0.7 of it is 42.
    11·2 answers
  • Hey I need help with this mathematics... it's surds<br><br>√3×√6
    11·1 answer
  • Choose 3 decimals that are greater than 1⁄2, but less than 1
    6·2 answers
  • Help me asap
    14·1 answer
  • Raising any base to the power of zero will yield _____.
    5·2 answers
  • Find y. (leave answer in simplest radical form) *
    12·1 answer
  • A center pivot irrigation system provides water to a sector shaped field, find the area of the field if 0=140 degrees and r= 40
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!