1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jarptica [38.1K]
3 years ago
8

the sum of the angle measures triangle is 180⁰ find the measures of each angle in the triangle below ​

Mathematics
1 answer:
Dvinal [7]3 years ago
5 0

Answer:

∠ABC= 82°

∠ACB= 82°

∠BAC= 16°

Step-by-step explanation:

∠ABC +∠ACB +∠BAC = 180° (∠ sum of △ABC)

(5x -3)° +(5x -3)° +(x -1)°= 180°

5x -3 +5x -3 +x -1= 180

11x -7= 180 <em>(</em><em>simplify</em><em>)</em>

11x= 180 +7 <em>(</em><em>+</em><em>7</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>

11x= 187

x= 187 ÷11

x= 17

∠ABC

= (5x -3)°

= [5(17) -3]°

= 82°

∠ACB

= ∠ABC

= 82°

∠BAC

= (17 -1)°

= 16°

Alternatively,

∠BAC

= 180° -82° -82°

= 16°

You might be interested in
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
3 years ago
In 2002, the mean age of an inmate on death row was 40.7 years with a standard deviation of 9.6 years according to the U.S. Depa
marissa [1.9K]

Answer:

The <em>95% confidence interval</em> for the current mean age of death-row inmates is between 42.23 years and 35.57 years.

Step-by-step explanation:

The <em>confidence interval</em> of the mean is given by the next formula:

\\ \overline{x} \pm z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}} [1]

We already know (according to the U.S. Department of Justice):

  • The (population) standard deviation for this case (mean age of an inmate on death row) has a standard deviation of 9.6 years (\\ \sigma = 9.6years).
  • The number of observations for the sample taken is \\ n = 32.
  • The sample mean, \\ \overline{x} = 38.9 years.

For \\ z_{1-\frac{\alpha}{2}}, we have that \\ \alpha = 0.05. That is, the <em>level of significance</em> \\ \alpha is 1 - 0.95 = 0.05. In this case, then, we have that the <em>z-score</em> corresponding to this case is:

\\ z_{1-\frac{\alpha}{2}} = z_{1-\frac{0.05}{2}} = z_{1-0.025} = z_{0.975}

Consulting a cumulative <em>standard normal table</em>, available on the Internet or in Statistics books, to find the z-score associated to the probability of, \\ P(z, we have that \\ z = 1.96.

Notice that we supposed that the sample is from a population that follows a <em>normal distribution</em>. However, we also have a value for n > 30, and we already know that for this result the sampling distribution for the sample means follows, approximately, a normal distribution with mean, \\ \mu, and standard deviation, \\ \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}.

Having all this information, we can proceed to answer the question.

Constructing the 95% confidence interval for the current mean age of death-row inmates

To construct the 95% confidence interval, we already know that this interval is given by [1]:

\\ \overline{x} \pm z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}

That is, we have:

\\ \overline{x} = 38.9 years.

\\ z_{1-\frac{\alpha}{2}} = 1.96

\\ \sigma = 9.6 years.

\\ n = 32

Then

\\ 38.9 \pm 1.96*\frac{9.6}{\sqrt{32}}

\\ 38.9 \pm 1.96*\frac{9.6}{5.656854}

\\ 38.9 \pm 1.96*1.697056

\\ 38.9 \pm 3.326229

Therefore, the Upper and Lower limits of the interval are:

Upper limit:

\\ 38.9 + 3.326229

\\ 42.226229 \approx 42.23 years.

Lower limit:

\\ 38.9 - 3.326229

\\ 35.573771 \approx 35.57 years.

In sum, the 95% confidence interval for the current mean age of death-row inmates is between 42.23 years and 35.57 years.

Notice that the "mean age of an inmate on death row was 40.7 years in 2002", and this value is between the limits of the 95% confidence interval obtained. So, according to the random sample under study, it seems that this mean age has not changed.

7 0
4 years ago
Will give brainliest
tester [92]

Answer:

its all sides are equal and diagonal make 90° angle.

so, the answer option c.

4 0
3 years ago
Plz help I don’t get this
Law Incorporation [45]

Mary has 48 stickers. The ratio is 4:7

divide 48 with 4

48/4 = 12

Multiply 12 with 7

12 x 7 = 84

Mary buys another 8 stickers: 48 + 8 = 56

56:84 is the new ratio

hope this helps

7 0
3 years ago
HELP ME PPLS I LOVE U &lt;33
S_A_V [24]

Answer:

The surface area is about 395.2 cm^2.

Step-by-step explanation:

S = 2*(6.72*12.7 + 5.78*(6.72 +12.7))

.. = 2*(85.344 +5.78*19.42)

.. = 2*197.5916)

.. = 395.1832

5 0
3 years ago
Other questions:
  • A train leaves the station at 9:00 pm traveling east at 36 miles per hour. A second train leaves the station at 10:00 pm traveli
    5·2 answers
  • (2^8 x 3^−5 x 6^0)−2 x 3 to the power of negative 2 over 2 to the power of 3, whole to the power of 4 x 2^28
    6·2 answers
  • A block of cheese is in the shape of a rectangle prism with a width of 2.5 inches in the height of 5 inches the volume of the bl
    6·2 answers
  • The clubhouse has a water tank from which hikers fill their water jugs before walking the trail. The tank is a 5-gallon cylindri
    6·2 answers
  • Find the prime factorization of 72.​
    7·2 answers
  • Explain the step(s) needed to solve 4+ p = 1 and then solve for p
    10·1 answer
  • After school, Emily had a science club meeting for 40 minutes, followed by a choir rehearsal
    5·1 answer
  • The graph of a function is shown.
    9·1 answer
  • By which angle must AB turn about point A in the clockwise direction so that it coincides with AE ? A. 90° B. 180° C. 270° D. 36
    11·1 answer
  • Can you guys help we with this question. ​​​​​​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!