Answer:
Explanation:
For second order reaction
dC / dt = -k C²
dC /C² = - kdt
Integrating on both sides,
[- 1/C ] = - kt + P , P is a constant .
When t =0 , C = 1.33 M
P = - 1 / 1.33
[- 1/C ] =- - kt - 1 / 1.33
When t = 8.5
[- 1/C ] = - kt - 1 / 1.33
= - 1.18 x 8.5 - 1 / 1.33
= - 10.03 - .7519
= - 10.782
C = .0927 M
= .093 M
Capsaicin is the chemical in the peppers, and then milk reverses it by using casein (A fat loving compound) to bond to the capsaicin and wash it away. Hope this helps!
The answer is B I had took that last year
Answer:
The expected ratio of half-lives for a reaction will be 5:1.
Explanation:
Integrated rate law for zero order kinetics is given as:
![k=\frac{1}{t}([A_o]-[A])](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%28%5BA_o%5D-%5BA%5D%29)
= initial concentration
[A]=concentration at time t
k = rate constant
if, ![[A]=\frac{1}{2}[A_o]](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B1%7D%7B2%7D%5BA_o%5D)
, the equation (1) becomes:
![t_{\frac{1}{2}}=\frac{[A_o]}{2k}](https://tex.z-dn.net/?f=t_%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cfrac%7B%5BA_o%5D%7D%7B2k%7D)
Half life when concentration was 0.05 M=
Half life when concentration was 0.01 M=
Ratio of half-lives will be:
![\frac{t_{\frac{1}{2}}}{t_{\frac{1}{2}}'}=\frac{\frac{[0.05 M]}{2k}}{\frac{[0.01 M]}{2k}}=\frac{5}{1}](https://tex.z-dn.net/?f=%5Cfrac%7Bt_%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7Bt_%7B%5Cfrac%7B1%7D%7B2%7D%7D%27%7D%3D%5Cfrac%7B%5Cfrac%7B%5B0.05%20M%5D%7D%7B2k%7D%7D%7B%5Cfrac%7B%5B0.01%20M%5D%7D%7B2k%7D%7D%3D%5Cfrac%7B5%7D%7B1%7D)
The expected ratio of half-lives for a reaction will be 5:1.