Here is your answer:
The amount of electrons that the element Beryllium has is: 4
Reason:
Beryllium atomic number is 4
Therefore the amount of protons and electrons Beryllium has is 4
Your answer is 5.
Hope this helps.
Answer:
Option E is correct. none of the above is correct
Explanation:
Step 1: Data given
Solid Iron (III) = Fe^3+
iron (III) oxide = Fe2O3
Molar mass Fe = 55.845 g/mol
Molar mass Fe2O3 = 159.69 g/mol
Step 2: The balanced equation:
4Fe + 3O2 → 2Fe2O3
4 moles of iron will need 2 moles of oxygen gas to fully react
⇒ This is false 4 moles of iron will need 3 moles of oxygen gas to fully react
B.12 moles of iron, if reacted completely, can produce 8 moles of iron (III) oxide.
⇒ This is false: When 12 moles of iron completely react, we can produce 12/2 = 6 moles of Fe2O3
C.9 moles of oxygen can produce 9 moles of Iron (III) oxide
⇒ This is false; 9 moles of O2 can produce 6 moles of Fe2O3
D.6 moles of oxygen can react completely to produce 6 moles of iron (III) oxide.
⇒ This is false 6 moles of O2 will react completely to produce 4 moles of Fe2O3
E.none of the above
This is an acid base reaction and the chemical equation for the above reaction is as follows;
KOH + HClO₄ ---> KClO₄ + H₂O
the stoichiometry of acid to base is 1:1
KOH is a strong base and HClO₄ is a strong acid therefore they both ionize completely into their respective ions
Number of KOH moles - 0.723 M/1000 mL/L x 25.0 mL = 0.018 mol
Number of HClO₄ moles - 0.273 M/1000 mL/L x 50 mL = 0.013 mol
since acid and base react completely, 0.013 mol of acid reacts with 0.013 mol of base.
The excess base remaining is - 0.018 - 0.013 = 0.005 mol
total volume of solution = 25.0 mL + 50.0 mL = 75.0 mL
[OH⁻] = 0.005 mol/0.075 L = 0.067 M
pOH = -log[OH⁻]
pOH = -log(0.067 M)
pOH = 1.17
pOH + pH = 14
Therefore pH = 14 - 1.17 = 12.83
by knowing pH we can calculate the [H₃O⁺]
pH = -log [H₃O⁺]
[H₃O⁺] = antilog[-12.83]
[H₃O⁺]= 1.47 x 10⁻¹³ M
Answer:
<u><em>Density is the same</em></u>
Explanation:
The density remains the same because cutting the object in half will divide the mass & volume by the same amount. Also, the density of a substance remains the same no matter what size it is.
Answer:
The answer is actually CO4
Explanation:
prove me wrong