The molecular structure of the solids has lower ability to conduct electricity due to tight holding by nucleus.
<h3>Why molecular solids are poor conductors?</h3>
Molecular solids are also poor conductors of electricity because their valence electrons are tightly held by the nuclear charges present in the nucleus while on the other hand, Metals are good electrical conductors in the solid form due to the presence of free electrons that helps in the conduction of electricity.
Learn more about electricity here: brainly.com/question/25144822
Explanation:
As it is known that in solids, molecules are held together because of strong intermolecular forces of attraction. As a result, they are held together and have definite shape and volume.
Whereas in liquids, molecules are not held so strongly as they are in solids. Hence, they move from their initial position and they do not have definite shape but they have definite volume.
Liquids obtain the shape of container in which they are kept.
In gases, molecules are held together by weak intermolecular forces. As a result, they move far apart from each other and occupy the space of a container or vessel in which they are placed.
The physical state (at room temperature) of the following are determined as follows:
(a) Helium in a toy balloon : Helium at room temperature exists as a gas. So, when helium is present in a toy balloon then it acquires the volume of toy balloon.
(b) Mercury in a thermometer : Mercury at room temperature exists as a liquid. When it is placed in a thermometer then volume of mercury does not get affected.
(c) Soup in a bowl : Since, soup is a liquid. Hence, its volume will not change according to the volume of container.
2.4(10^3)
=2.4*10^3
=2.4*(10*10*10)
=2400 <span>milliliters
To </span>centiliters is<span> 2400mL= <u>240.0000cl. </u> </span>
Answer:
Your diaphragm contracts and expands
Answer:
Energy in foods is provided by macro-nutrients.
Explanation:
Nutrients are “environmental substances” used for growth, energy, and bodily functions of the organisms. Those nutrients that are required in larger amounts are called macro-nutrients.
There are 3 macro-nutrients needed by humans: lipids (fats), carbohydrates (sugar) and proteins. All these macro-nutrients gives energy in form of “calories”. For example:
- In carbohydrates, there are '4 calories' of energy per gram.
- In proteins, there are '4 calories' of energy per gram.
- And in lipids, there are '9 calories' of energy in one gram.
This means that if you look at a food label and it lists 10 grams of carbohydrates, 0 grams of protein, and 0 grams of fat, that food would contain 40 calories.