Answer: Heat of vaporization is 41094 Joules
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 429 K = 760 torr
= final pressure at 415 K = 515 torr
= enthalpy of vaporisation = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 429 K
= final temperature = 515 K
Now put all the given values in this formula, we get
![\log (\frac{515}{760}=\frac{\Delta H}{2.303\times 8.314J/mole.K}[\frac{1}{429K}-\frac{1}{415K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B515%7D%7B760%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B429K%7D-%5Cfrac%7B1%7D%7B415K%7D%5D)

Thus the heat of vaporization is 41094 Joules
Answer:
Silver has to give up one electron.
Explanation:
Silver is a transition element and has a partially filled 4d- orbital having 9 electrons and a 5s orbital having 2 electrons in it. In order to achieve stability, silver must have completely filled d-orbital having a maximum number of 10 electrons in it.
Therefore, one electron from 5s orbital jumps to 4d orbital to make it stable. Now, 5s orbital has only one electron, and it will be easy for silver to lose this electron to attain a stable electronic configuration.
Answer:
Atoms are neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). If an atom gains or loses one or more electrons, it becomes an ion.
Explanation: