I believe the first blank is inertia
Atoms of elements that are nonmetals tend to gain electrons and atoms of metallic elements tend to lose electrons. Metals have few electrons in their valence shells.
By losing those electrons, these metals achieve noble gas configuration and satisfy the octet rule.
Nonmetals that have close to 8 electrons in their valence shells readily accept electrons to achieve noble gas configuration.
An example is the reaction between calcium and oxygen. Calcium is a metal and has 2 valence electrons. Oxygen is a nonmetal and has 6 valence electrons.
Calcium gives up its two valence electrons and oxygen accepts them and an ionic bond is established resulting in the formation of anew compound namely calcium oxide.
Answer:
Explanation:
Ksp(BaSO4)=1.07×10−10
BaSO₄ → Ba²⁺ + SO₄²⁻
1.07×10⁻¹⁰ = ( Ba²⁺) × ( SO₄²⁻)
but Ba²⁺ = 1.3×10⁻² M
1.07×10⁻¹⁰ = 1.3×10⁻² M × ( SO₄²⁻)
( SO₄²⁻) = 1.07×10⁻¹⁰ / 1.3×10⁻² = 0.823 × 10⁻⁸ M
while Ksp(CaSO4)=7.10×10−5
CaSO₄ → Ca²⁺ + SO₄²⁻
7.10×10⁻⁵ = 2.0×10⁻² × ( SO₄²⁻)
( SO₄²⁻) = 7.10×10⁻⁵ / 2.0×10⁻² = 3.55 × 10⁻³ M
comparing the concentration of sulfate ions, Ba²⁺ cation will precipitate first because the Ba²⁺ requires 0.823 × 10⁻⁸ M sodium sulfate which less compared the about needed by CaSO₄
Answer:
E) 2.38
Explanation:
The pH of any solution , helps to determine the acidic strength of the solution ,
i.e. ,
- Lower the value of pH , higher is its acidic strength
and ,
- Higher the value of pH , lower is its acidic strength .
pH is given as the negative log of the concentration of H⁺ ions ,
hence ,
pH = - log H⁺
From the question ,
the concentration of the solution is 0.0042 M , and being it a strong acid , dissociates completely to its respective ions ,
Therefore , the concentration of H⁺ = 0.0042 M .
Hence , using the above equation , the value of pH can be calculated as follows -
pH = - log H⁺
pH = - log ( 0.0042 M )
pH = 2.38 .