Answer:
The standard error of the sample proportion is 0.0993.
The probability that 12 or fewer people (out of 20) in your sample support the bond referendum is 0.0951.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean
and standard deviation 
73% of voters support it.
This means that 
Sample of 20 voters
This means that 
Mean and standard deviation:


The standard error of the sample proportion is 0.0993.
The probability that 12 or fewer people (out of 20) in your sample support the bond referendum is
12/20 = 0.6, so this is the p-value of Z when X = 0.6.



has a p-value of 0.0951.
So
The probability that 12 or fewer people (out of 20) in your sample support the bond referendum is 0.0951.