Answer:
3200000
Step-by-step explanation:
multiply the volume value by 1000
Y=9x because if you divided y by x all the numbers will equal to 9 which is proportional
Population. Population is the amount of whatever is inisde
Answer:
16π
Step-by-step explanation:
Given that:
The sphere of the radius = ![x^2 + y^2 +z^2 = 4^2](https://tex.z-dn.net/?f=x%5E2%20%2B%20y%5E2%20%2Bz%5E2%20%3D%204%5E2)
![z^2 = 16 -x^2 -y^2](https://tex.z-dn.net/?f=z%5E2%20%3D%2016%20-x%5E2%20-y%5E2)
![z = \sqrt{16-x^2-y^2}](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%7B16-x%5E2-y%5E2%7D)
The partial derivatives of ![Z_x = \dfrac{-2x}{2 \sqrt{16-x^2 -y^2}}](https://tex.z-dn.net/?f=Z_x%20%3D%20%5Cdfrac%7B-2x%7D%7B2%20%5Csqrt%7B16-x%5E2%20-y%5E2%7D%7D)
![Z_x = \dfrac{-x}{\sqrt{16-x^2 -y^2}}](https://tex.z-dn.net/?f=Z_x%20%3D%20%5Cdfrac%7B-x%7D%7B%5Csqrt%7B16-x%5E2%20-y%5E2%7D%7D)
Similarly;
![Z_y = \dfrac{-y}{\sqrt{16-x^2 -y^2}}](https://tex.z-dn.net/?f=Z_y%20%3D%20%5Cdfrac%7B-y%7D%7B%5Csqrt%7B16-x%5E2%20-y%5E2%7D%7D)
∴
![dS = \sqrt{1 + Z_x^2 +Z_y^2} \ \ . dA](https://tex.z-dn.net/?f=dS%20%3D%20%5Csqrt%7B1%20%2B%20Z_x%5E2%20%2BZ_y%5E2%7D%20%5C%20%5C%20.%20dA)
![=\sqrt{1 + \dfrac{x^2}{16-x^2-y^2} + \dfrac{y^2}{16-x^2-y^2} }\ \ .dA](https://tex.z-dn.net/?f=%3D%5Csqrt%7B1%20%2B%20%5Cdfrac%7Bx%5E2%7D%7B16-x%5E2-y%5E2%7D%20%2B%20%5Cdfrac%7By%5E2%7D%7B16-x%5E2-y%5E2%7D%20%7D%5C%20%5C%20.dA)
![=\sqrt{ \dfrac{16}{16-x^2-y^2} }\ \ .dA](https://tex.z-dn.net/?f=%3D%5Csqrt%7B%20%5Cdfrac%7B16%7D%7B16-x%5E2-y%5E2%7D%20%20%7D%5C%20%5C%20.dA)
![=\dfrac{4}{\sqrt{ 16-x^2-y^2} }\ \ .dA](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B4%7D%7B%5Csqrt%7B%2016-x%5E2-y%5E2%7D%20%20%7D%5C%20%5C%20.dA)
Now; the region R = x² + y² = 12
Let;
x = rcosθ = x; x varies from 0 to 2π
y = rsinθ = y; y varies from 0 to ![\sqrt{12}](https://tex.z-dn.net/?f=%5Csqrt%7B12%7D)
dA = rdrdθ
∴
The surface area ![S = \int \limits _R \int \ dS](https://tex.z-dn.net/?f=S%20%3D%20%5Cint%20%5Climits%20_R%20%5Cint%20%5C%20dS)
![= \int \limits _R\int \ \dfrac{4}{\sqrt{ 16-x^2 -y^2} } \ dA](https://tex.z-dn.net/?f=%3D%20%20%5Cint%20%5Climits%20_R%5Cint%20%20%5C%20%5Cdfrac%7B4%7D%7B%5Csqrt%7B%2016-x%5E2%20-y%5E2%7D%20%7D%20%5C%20dA)
![= \int \limits^{2 \pi}_{0} } \int^{\sqrt{12}}_{0} \dfrac{4}{\sqrt{16-r^2}} \ \ rdrd \theta](https://tex.z-dn.net/?f=%3D%20%5Cint%20%5Climits%5E%7B2%20%5Cpi%7D_%7B0%7D%20%7D%20%5Cint%5E%7B%5Csqrt%7B12%7D%7D_%7B0%7D%20%5Cdfrac%7B4%7D%7B%5Csqrt%7B16-r%5E2%7D%7D%20%5C%20%20%5C%20rdrd%20%5Ctheta)
![= 2 \pi \int^{\sqrt{12}}_{0} \ \dfrac{4r}{\sqrt{16-r^2}}\ dr](https://tex.z-dn.net/?f=%3D%202%20%5Cpi%20%5Cint%5E%7B%5Csqrt%7B12%7D%7D_%7B0%7D%20%5C%20%5Cdfrac%7B4r%7D%7B%5Csqrt%7B16-r%5E2%7D%7D%5C%20dr)
![= 2 \pi \times 4 \Bigg [ \dfrac{\sqrt{16-r^2}}{\dfrac{1}{2}(-2)} \Bigg]^{\sqrt{12}}_{0}](https://tex.z-dn.net/?f=%3D%202%20%5Cpi%20%5Ctimes%204%20%5CBigg%20%5B%20%5Cdfrac%7B%5Csqrt%7B16-r%5E2%7D%7D%7B%5Cdfrac%7B1%7D%7B2%7D%28-2%29%7D%20%5CBigg%5D%5E%7B%5Csqrt%7B12%7D%7D_%7B0%7D)
![= 8\pi ( - \sqrt{4} + \sqrt{16})](https://tex.z-dn.net/?f=%3D%208%5Cpi%20%28%20-%20%5Csqrt%7B4%7D%20%2B%20%5Csqrt%7B16%7D%29)
= 8π ( -2 + 4)
= 8π(2)
= 16π