Answer:
5.86
Step-by-step explanation:
16.76 rounds off to 17
After the dot if it’s 1-4 then they it would’ve been 15
5-9 is 17
<h2><u>Angles</u></h2>
<h3>If angle 1 is 140°, then find the measure of the other angles.</h3>
- ∠2 = <u>40°</u>
- ∠3 = <u>40°</u>
- ∠4 = <u>140°</u>
- ∠5 = <u>140°</u>
- ∠6 = <u>40°</u>
- ∠7 = <u>40°</u>
- ∠8 = <u>140°</u>
<u>Explanation:</u>
- The relationship between ∠1 and ∠2 are <u>supplementary angles</u>, so when you <u>add up their measurements, it will become 180°</u>. Simply subtract 180 and 140 to get the measure of ∠2. As well as ∠3, they're <u>linear pairs</u>. And they are also <u>supplementary</u>. To determine the measure of ∠6 and ∠7, notice the <u>relationship</u> between ∠2 and ∠6. As you noticed, it is <u>corresponding angles</u>. So they <u>have the same measurement</u>. If <u>∠2 = 40°</u>, then <u>∠6 = 40°</u>. As well as ∠7, because the relationship between ∠6 and ∠7 are <u>vertical pairs</u>. So the angle measurement of ∠7 is also <u>40°</u>.
- Meanwhile, the relationship between ∠1 and ∠4 are <u>vertical pairs</u>. It means they also <u>have the same measurement</u>. So ∠4 = <u>140°</u>. The relationship between ∠1 and ∠5 are <u>corresponding angles</u>, so they also <u>have the same measurement</u>. If <u>∠1 = 140°</u>, then <u>∠5 = 140°</u>. The relationship between ∠1 and ∠8 are <u>alternate exterior angles</u>, and they also <u>have the same measurement</u>. <u>If ∠1 = 140°</u>, then <u>∠8 = 140°</u>.
Wxndy~~
This is binomial probability with n=50 and p=0.62.
We want binom(50,0.62,35).
One way to calculate this is to use a calculator with statistical functions.
My TI-83 Plus turned out the result 0.061.
The easiest way to tell whether lines are parallel, perpendicular, or neither is when they are written in slope-intercept form or y = mx + b. We will begin by putting both of our equations into this format.
The first equation,

is already in slope intercept form. The slope is 1/2 and the y-intercept is -1.
The second equation requires rearranging.

From this equation, we can see that the slope is -1/2 and the y-intercept is -3.
When lines are parallel, they have the same slope. This is not the case with these lines because one has slope of 1/2 and the other has slope of -1/2. Since these are not the same our lines are not parallel.
When lines are perpendicular, the slope of one is the negative reciprocal of the other. That is, if one had slope 2, the other would have slope -1/2. This also is not the case in this problem.
Thus, we conclude that the lines are neither parallel nor perpendicular.