Answer:
nicce
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
The vertex formula of a quadratic equation is:
●y= a(x-h)^2 +k
(h,k) are the coordinates of the vertex
Here: h = -5 and k= -2
y is 2 and x is -4
● 2 = a (-4-(-5))^2 + (-2)
● 2 = a (-4+5)^2 -2
● 2 = a *1^2 -2
● 2 = a -2
● 4 = a
Answer:
125
Step-by-step explanation:
37x= 37*x= 37x3= 111
111+14=125 hope it makes sense lol
Answer:
-3
Step-by-step explanation:
x(-y+z) replace with the values given above
-1(-2+5)
The moment of inertia about the y-axis of the thin semicircular region of constant density is given below.
![\rm I_y = \dfrac{1}{8} \times \pi r^4](https://tex.z-dn.net/?f=%5Crm%20I_y%20%3D%20%5Cdfrac%7B1%7D%7B8%7D%20%5Ctimes%20%5Cpi%20r%5E4)
<h3>What is rotational inertia?</h3>
Any item that can be turned has rotational inertia as a quality. It's a scalar value that indicates how complex it is to adjust an object's rotational velocity around a certain axis.
Then the moment of inertia about the y-axis of the thin semicircular region of constant density will be
![\rm I_x = \int y^2 dA\\\\I_y = \int x^2 dA](https://tex.z-dn.net/?f=%5Crm%20I_x%20%3D%20%5Cint%20y%5E2%20dA%5C%5C%5C%5CI_y%20%3D%20%5Cint%20x%5E2%20dA)
x = r cos θ
y = r sin θ
dA = r dr dθ
Then the moment of inertia about the x-axis will be
![\rm I_x = \int _0^r \int _0^{\pi} (r\sin \theta )^2 \ r \ dr \ d\theta\\\\\rm I_x = \int _0^r \int _0^{\pi} r^3 \sin ^2\theta \ dr \ d\theta](https://tex.z-dn.net/?f=%5Crm%20I_x%20%3D%20%5Cint%20_0%5Er%20%5Cint%20_0%5E%7B%5Cpi%7D%20%20%28r%5Csin%20%5Ctheta%20%29%5E2%20%20%5C%20r%20%5C%20%20dr%20%5C%20%20d%5Ctheta%5C%5C%5C%5C%5Crm%20I_x%20%3D%20%5Cint%20_0%5Er%20%5Cint%20_0%5E%7B%5Cpi%7D%20%20r%5E3%20%5Csin%20%5E2%5Ctheta%20%20%5C%20%20dr%20%5C%20%20d%5Ctheta)
On integration, we have
![\rm I_x = \dfrac{1}{8} \times \pi r^4](https://tex.z-dn.net/?f=%5Crm%20I_x%20%3D%20%5Cdfrac%7B1%7D%7B8%7D%20%5Ctimes%20%5Cpi%20r%5E4)
Then the moment of inertia about the y-axis will be
![\rm I_y = \int _0^r \int _0^{\pi} (r\cos\theta )^2 \ r \ dr \ d\theta\\\\\rm I_y = \int _0^r \int _0^{\pi} r^3 \cos ^2\theta \ dr \ d\theta](https://tex.z-dn.net/?f=%5Crm%20I_y%20%3D%20%5Cint%20_0%5Er%20%5Cint%20_0%5E%7B%5Cpi%7D%20%20%28r%5Ccos%5Ctheta%20%29%5E2%20%20%5C%20r%20%5C%20%20dr%20%5C%20%20d%5Ctheta%5C%5C%5C%5C%5Crm%20I_y%20%3D%20%5Cint%20_0%5Er%20%5Cint%20_0%5E%7B%5Cpi%7D%20%20r%5E3%20%5Ccos%20%5E2%5Ctheta%20%20%5C%20%20dr%20%5C%20%20d%5Ctheta)
On integration, we have
![\rm I_y = \dfrac{1}{8} \times \pi r^4](https://tex.z-dn.net/?f=%5Crm%20I_y%20%3D%20%5Cdfrac%7B1%7D%7B8%7D%20%5Ctimes%20%5Cpi%20r%5E4)
Then the moment of inertia about O will be
![\rm I_o = I_x + I_y\\\\I_o = \dfrac{1}{8} \times \pi r^4 + \dfrac{1}{8} \times \pi r^4\\\\I_o = \dfrac{1}{4} \times \pi r^4](https://tex.z-dn.net/?f=%5Crm%20I_o%20%3D%20I_x%20%2B%20I_y%5C%5C%5C%5CI_o%20%3D%20%5Cdfrac%7B1%7D%7B8%7D%20%5Ctimes%20%5Cpi%20r%5E4%20%2B%20%5Cdfrac%7B1%7D%7B8%7D%20%5Ctimes%20%5Cpi%20r%5E4%5C%5C%5C%5CI_o%20%3D%20%5Cdfrac%7B1%7D%7B4%7D%20%5Ctimes%20%5Cpi%20r%5E4)
More about the rotational inertia link is given below.
brainly.com/question/22513079
#SPJ4