Answer: The chances are of the probability = 0.0001
Step-by-step explanation:
The normal distribution can be described completely by the two parameters µ and σ.
As always, the mean is the center of the distribution and the standard deviation is the measure of the variation around the mean.
Please find the attached file for the solution
Both of the digits in the hundreds and tens place are 4, making it a relationship. The 4 in the hundreds place is worth 400, the 4 in the tens place is worth 40, and the 0 in the ones place is worth 0.
Hope this helped!
Nate
Answer. C + .07c
Step-by-step explanation:
C is retail. Sales tax of 7% (.07) is added to that retail cost to reach the total sales price
Answer:
it's used in conjunction with variance
1. M is the midpoint of LN and O is the midpoint of NP. This makes the triangle MNO equal to half of LNP. Then you can get this equation
MO= (1/2) LP
If you insert MO = 2x +6 and LP = 8x – 20 the calculation would be:
2x+6= (1/2)( 8x-20)
2x+6= 4x-10
2x-4x= -10 - 6
-2x= -16
x=8
2. Centroid is the point that intersects with three median lines of the triangle. The centroid should divide the median lines into 1:2 ratio. In AC lines, A located in the base so A.F:FC would be 1:2
Then, the answer would be:
A.F= 1/(1+2) * AC
A.F= 1/3 * 12= 4
FC= 2/(1+2) * AC
FC= 2/3 * 12= 8
3. Since
∠BAD=∠DAC
∠ABD=∠ACD
AD=AD
The triangle ABD and ACD are similar. You can get this equation
BD=DC
x+8= 3x+12
x-3x= 12-8
-2x=4
x=-2
DC=3x+12= 3(-2) +12= 6
4. Orthocenter made by intersection of triangle altitude
A
BC lines slope would be (-4)-(-1)/1-4= -3/-3= 1. The altitude line slope would be -1, the function would be:
y=-x +a
0= 1+a
a=-1
y=-x-1
B
AC lines slope would be (-4)-(-1)/1-0= -3. The altitude line slope would be 1/3, the function would be:
y=1/3x+a
-1=1/3(4)+a
a=-7/3
y=1/3x - 7/3
C
BC lines slope would be (-1)-(-1)/4 = 0/4.
The line would be
0=x+a
a=-1
0=x-1
x=1
y=-x-1 = 1/3x-7/3
-x-(1/3x)=-7/3 +1
-4/3x= -4/3
x=1
y=-x-1
y=-1-1= -2
The orthocenter would be (1,-2)
5.
a. Circumcenter: the intersection of perpendicular bisector lines<span>
b. Incenter: the intersection of bisector lines
c. Centroid: </span>the intersection of median lines<span>
d. Orthocenter: </span>the intersection of altitude lines