The value of the differential with respect to x is -xy/x²+ay
<h3>Implicit differentiation</h3>
Given the following function
x²y +ay² = b
We are to differentiate implicitly with respect to x
x²dy/dx + 2xy + 2aydy/dx = 0
(2x²+2ay)dy/dx = -2xy
dy/dx = -xy/x²+ay
Hence the value of the differential with respect to x is -xy/x²+ay
Learn more on implicit differentiation here: brainly.com/question/25081524
#SPJ1
Answer:
n+12 <4
Step-by-step explanation:
Answer:
Circular paraboloid
Step-by-step explanation:
Given ,

Here, these are the respective
axes components.
- <em>Component along x axis
</em>
- <em>Component along y axis
</em>
- <em>Component along z axis
</em>
We see that , from the parameterised equation , 
This can also be written as :

This is similar to an equation of a parabola in 1 Dimension.
By fixing the value of z=0,
<u><em>We get
which is equation of a parabola curving towards the positive infinity of y-axis and in the x-y plane.</em></u>
By fixing the value of x=0,
<u><em>We get
which is equation of a parabola curving towards positive infinity of y-axis and in the y-z plane. </em></u>
Thus by fixing the values of x and z alternatively , we get a <u>CIRCULAR PARABOLOID. </u>
I can’t really read it it’s blurry