1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
3 years ago
12

NEED HELP! WILL MARK BRAINLIEST

Mathematics
1 answer:
ICE Princess25 [194]3 years ago
6 0

Answer:

im pretty sure its 27.

Step-by-step explanation:

if g(x) = 20 then the new problem is 20=x-7

20=x-7 . add 7 to both sides

+7=+7 . +7 cancels out the -7

27=x . <<<answer

You might be interested in
A bag contains 5 black marbles, 9 white marbles, and 2 red marbles. One marble is to be chosen at random.
Andrej [43]
2/16
BC there are 2 red marbles out of 16 marbles in total
5 0
3 years ago
Read 2 more answers
you plan to buy a bicycle that will cost at least 180. you have saved 38 and your parents have given you 50. how much more money
shutvik [7]

Answer:

$92

Step-by-step explanation:

  • add what you saved and the parents gave you
  • subtract that by 180
  • $92
4 0
3 years ago
Use the given information to find (a) sin(s+t), (b) tan(s+t), and (c) the quadrant of s+t. cos s = - 12/13 and sin t = 4/5, s an
Anton [14]

Answer:

Part a) sin(s + t) =-\frac{63}{65}    

Part b) tan(s + t) = -\frac{63}{16}

Part c) (s+t) lie on Quadrant IV

Step-by-step explanation:

[Part a) Find sin(s+t)

we know that

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

step 1

Find sin(s)

sin^{2}(s)+cos^{2}(s)=1

we have

cos(s)=-\frac{12}{13}

substitute

sin^{2}(s)+(-\frac{12}{13})^{2}=1

sin^{2}(s)+(\frac{144}{169})=1

sin^{2}(s)=1-(\frac{144}{169})

sin^{2}(s)=(\frac{25}{169})

sin(s)=\frac{5}{13} ---> is positive because s lie on II Quadrant

step 2

Find cos(t)

sin^{2}(t)+cos^{2}(t)=1

we have

sin(t)=\frac{4}{5}

substitute

(\frac{4}{5})^{2}+cos^{2}(t)=1

(\frac{16}{25})+cos^{2}(t)=1

cos^{2}(t)=1-(\frac{16}{25})

cos^{2}(t)=\frac{9}{25}

cos(t)=-\frac{3}{5} is negative because t lie on II Quadrant

step 3

Find sin(s+t)

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute the values

sin(s + t) = (\frac{5}{13})(-\frac{3}{5}) + (\frac{4}{5})(-\frac{12}{13})

sin(s + t) = -(\frac{15}{65}) -(\frac{48}{65})

sin(s + t) =-\frac{63}{65}

Part b) Find tan(s+t)

we know that

tex]tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))[/tex]

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

step 1

Find tan(s)

tan(s)=sin(s)/cos(s)

substitute

tan(s)=(\frac{5}{13})/(-\frac{12}{13})=-\frac{5}{12}

step 2

Find tan(t)

tan(t)=sin(t)/cos(t)

substitute

tan(t)=(\frac{4}{5})/(-\frac{3}{5})=-\frac{4}{3}

step 3

Find tan(s+t)

tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))

substitute the values

tan(s + t) = (-\frac{5}{12} -\frac{4}{3})/(1 - (-\frac{5}{12})(-\frac{4}{3}))

tan(s + t) = (-\frac{21}{12})/(1 - \frac{20}{36})

tan(s + t) = (-\frac{21}{12})/(\frac{16}{36})

tan(s + t) = -\frac{63}{16}

Part c) Quadrant of s+t

we know that

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

Find the value of cos(s+t)

cos(s+t) = cos(s) cos(t) -sin (s) sin(t)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute

cos(s+t) = (-\frac{12}{13})(-\frac{3}{5})-(\frac{5}{13})(\frac{4}{5})

cos(s+t) = (\frac{36}{65})-(\frac{20}{65})

cos(s+t) =\frac{16}{65}

we have that

cos(s+t)=positive -----> (s+t) could be in I or IV quadrant

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

therefore

(s+t) lie on Quadrant IV

4 0
3 years ago
HELP MEMMEMEMEMEM PLZZZZZZZZZZZZZZZ
ohaa [14]

Answer:

8=g-17

Theres the answer



5 0
3 years ago
Whats an equivalent ratio for 2 to 6 ​
zvonat [6]

Answer:

<h2>4 to 12</h2>

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Match the following differential equations with their solutions. The symbols A, B, C in the solutions stand for arbitrary consta
    12·1 answer
  • There are 16 boys and 12 girls in Mr.willam’s class. What is the ratio of boys to girls
    8·2 answers
  • If two lines are parallel, then they do not intersect.
    15·2 answers
  • Over the summer, for every 14 Okra seeds Dana planted, 9 plants grew. If he planted 182 seeds, how many grew into plants?
    10·2 answers
  • If z=sprt5 -sprt2, then Izl=​
    12·1 answer
  • What is the greatest common factor of 40 and 27?
    12·1 answer
  • I NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I WILL GIVE BRAINLIST WHOEVER COMES FIRST Evaluate the expression if x = 9 and
    14·1 answer
  • Estimate the product 28 2/3 x 4/5
    12·1 answer
  • Select the correct answer.
    14·1 answer
  • A certain pizza parlor has 7<br> different toppings. How many two-<br> topping pizzas are possible?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!