Answer:
The answer to your question is 0.10 M
Explanation:
Data
Molarity = ?
mass of Sucrose = 125 g
volume = 3.5 l
Formula
Molarity = moles / volume
Process
1.- Calculate the molar mass of sucrose
C₁₂H₂₂O₁₁ = (12 x 12) + (1 x 22) + (16 x 11)
= 144 + 22 + 176
= 342 g
2.- Convert the mass of sucrose to moles
342 g of sucrose ------------------- 1 mol
125 g of sucrose -------------------- x
x = (125 x 1) / 342
x = 0.365 moles
3.- Calculate the molarity
Molarity = 0.365 / 3.5
4.- Result
Molarity = 0.10
The Law of Conservation of Energy states that, within a closed system, the total amount of energy remains constant. However, energy may change from kinetic to potential and vice versa. The total energy will not have changed. <span>Enthalpy is a measure of the amount of energy that exists in a system at constant pressure. </span>
Answer : The half life of 28-Mg in hours is, 6.94
Explanation :
First we have to calculate the rate constant.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 48.0 hr
a = initial amount of the reactant disintegrate = 53500
a - x = amount left after decay process disintegrate = 53500 - 10980 = 42520
Now put all the given values in above equation, we get


Now we have to calculate the half-life.



Therefore, the half life of 28-Mg in hours is, 6.94
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.
Answer:
6 x 10⁵ kg Hg
Explanation:
The mass of mercury in the entire lake is found by multiplying the concentration of the mercury by the volume of the lake.
The volume of the lake is calculated in cubic feet:
V = (SA)x(depth) = (100mi²)(5280ft/mi)² x (20ft) = 5.57568 x 10¹⁰ ft³
Cubic feet are then converted to mL (1cm³=1mL)
(5.57568 x 10¹⁰ ft³) x (12in/ft)³ x (2.54cm/in)³ = 1.578856752 x 10¹⁵ mL
The mass of mercury is then found:
m = CV = (0.4μg/mL)(1g/10⁶μg)(1kg/1000g) x (1.578856752 x 10¹⁵ mL) = 6 x 10⁵ kg Hg