1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
13

The ratio of two numbers is 4:9. When 5 is subtracted from each of them the new ratio becomes 3:8. Find the numbers.​

Mathematics
1 answer:
natta225 [31]3 years ago
8 0

Answer:

FIRST NUMBER IS 20

AND

SECOND NUMBER IS 45

Step-by-step explanation:

LET THE RATIO BE X

FIRST NUMBER = 4X

SECOND NUMBER = 9X

A/Q,

=}4X - 5 / 9X - 5 = 3 / 8

CRISS CROSS,

=}8 ( 4X - 5 ) = 9X - 5 ( 3 )

=}32X - 40 = 27X - 15

=}32X - 27X = - 15 + 40

=}5X = 25

=}X = 25 / 5

=}X = 5

THEREFORE,

FIRST NUMBER

=} 4X

=} 5 × 4

=} 20

SECOND NUMBER

=} 9X

=} 5 × 9

=} 45

You might be interested in
URGENT NEED HELP CLICK TO SEE
Phantasy [73]

Answer:

D

Step-by-step explanation:

Can I have Brainliest? I hope this helped and have a nice day!!!

Work:

64 / 2 = 32

3/4 / 2 = 3/8

3/4 = 6/8

6/8 / 2 = 3/8

Final answer 32 3/8

3 0
3 years ago
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Please help i really need it really much
Zanzabum

Answer:

1.5

Step-by-step explanation:

Assuming that you mean that Simon is scaling Logan's build, the scale factor is 1.5.

To find this, you divide Simon's fort height by Logans.

7.5/5 = 1.5.

8 0
3 years ago
Read 2 more answers
Write an equation in slope-intercept form of the line that passes through (7, 2) and (2, 12)
Anika [276]

Step-by-step explanation:

the general slope intercept form is

y = ax + b

a is the slope, b is the y-intercept (when x=0).

the slope is the ratio y/x indicating how much y changes, when x changes for a certain amount of units when going from one point to another.

going from (7, 2) to (2, 12) :

x changes by -5 (from 7 to 2), y changes by +10 (from 2 to 12).

so, the slope is 10/-5 = -2

therefore, we have already

y = -2x + b

we get b by using the coordinates of one of the points as x and y. e.g. (7, 2)

2 = -2×7 + b = -14 + b

16 = b

so, the full line equation is

y = -2x + 16

4 0
3 years ago
Construct a 2 ×2 Matrix whose elements aij are given by a ij = i+j
beks73 [17]

Answer:

the required matrix is can be given as

8 0
2 years ago
Other questions:
  • Mr. Carter has 54 square tiles how should he arrange them so that he has the smallest perimeter? 9 x 6 rectangle 26 x 2 rectangl
    12·2 answers
  • What is the value of the letter N
    13·1 answer
  • Why do you think rates are usually written as unit rates
    12·1 answer
  • I need help on these 3
    13·1 answer
  • maria rewrites a fraction less than 1 as a decimal the numerator is a whole number greater than 0 for which the denominator will
    13·2 answers
  • Hellppppppp memeemme
    12·2 answers
  • Which system is equivalent to StartLayout Enlarged left-brace 1st Row 3 x squared minus 4 y squared = 25 2nd row negative 6 x sq
    12·2 answers
  • If f(x) = 2(34) + 1, what is the value of f(2)? <br>​
    5·1 answer
  • 2x+y=2(6-2) how to solve​
    10·1 answer
  • 1. Ms. Cedric bought a jar for 25 dimes. If she had 75
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!