The answer is 6.35. Because you put in 254 / 40 and it says 6.35.
Answer:
![4x^2y\sqrt[4]{3y}](https://tex.z-dn.net/?f=%204x%5E2y%5Csqrt%5B4%5D%7B3y%7D%20)
Step-by-step explanation:
![\sqrt[4]{768x^8y^5} =](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B768x%5E8y%5E5%7D%20%3D%20)
![= \sqrt[4]{256 \times 3(x^2)^4y^4y}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B4%5D%7B256%20%5Ctimes%203%28x%5E2%29%5E4y%5E4y%7D%20)
![= \sqrt[4]{4^4 \times 3(x^2)^4y^4y}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B4%5D%7B4%5E4%20%5Ctimes%203%28x%5E2%29%5E4y%5E4y%7D%20)
![= 4x^2y\sqrt[4]{3y}](https://tex.z-dn.net/?f=%20%3D%204x%5E2y%5Csqrt%5B4%5D%7B3y%7D%20)
Answer:
0.0818.
Step-by-step explanation:
This question can be solved using the binomial theorem because the probability of success is fixed.
Total adults = n = 20
Required attempts = r = 12
Probability of success = p = 3/4 = 0.46
Binomial Theorem formula:
P(X=r) = nCr * p^r * (1-p)^(n-r).
Substituting the values:
P(X=12) = 20C12 * 0.46^12 * (1-0.46)^8
P(X=12) = 125970 * 0.46^12 * (0.54)^8 = 0.0818 (to the nearest 3 significant figures).
So the probability that exactly 12 people use their smart phones in meetings or classes out of 20 is 0.0818!!!