To find this, first find the factor or rate of which the numbers are moving. To do so do as follows.
subtract 1 from 3
3-1=2
So each number is having 2 added to it.
Now add two to 7 and the numbers afterwards till you get the 12th term
7+2=9
1+3+5+7+9
9+2=11
1+3+5+7+9+11
11+2=13
1+3+5+7+9+11+13
13+2=15
1+3+5+7+9+11+13+15
15+2=17
1+3+5+7+9+11+13+15+17
17+2=19
1+3+5+7+9+11+13+15+17+19
19+2=21
1+3+5+7+9+11+13+15+17+19+21
21+2=23
1+3+5+7+9+11+13+15+17+19+21+23
So 23 is the 12th term
Answer:
Step-by-step explanation:
The graph decreases at first, then changes direction at (2, 5).
y = a(x-2)^2 + 5
Plug in (1,11) and solve for a:
11 = a(1-2)^2 + 5
a = 6
Equation in vertex form:
y = 6(x-2)^2 + 5
Answer: X= 30
Step-by-step explanation:
Hope that helped :)
Answer:
a)
Mean = sum of all numbers in dataset / total number in dataset
Mean = 8130/15 = 542
Median:
The median is also the number that is halfway into the set.
For median, we need to sort the data and then find the middle number which in our case is 546. Below is the sorted data
486 516 523 523 529 534 538 546 548 551 552 558 566 574 586
Standard Deviation (SD). Here X represents dataset and N= count of numbers in data
As per the SD formula, which is Sqrt ( sum (X_i - Meanx(X))/(N-1))
SD= 25.082
2) Formula for coefficient of skewness using Pearson's method (using median) is,
SK = 3* ( Mean (X) - Median(X))/(Standard Deviation) = 3*(542-546)/25.082 = -0.325
3) coefficient of skewness using the software method is also same which is -0.325
Answer:
from the t-distribution table, at df = 7 and t = 2.23
Lies p-values [ 0.05 and 0.025 ]
Hence;
0.025 < p-value < 0.05
Step-by-step explanation:
Given that;
= 6.5 gpm
μ = 5 gpm
n = eight runs = 8
standard deviation σ = 1.9 gpm
Test statistics;
t = (
- μ) / 
we substitute
t = (6.5 - 5) / 
t = 1.5 / 0.67175
t = 2.23
the degree of freedom df = n-1 = 8 - 1
df = 7
Now, from the t-distribution table, at df = 7 and t = 2.23
Lies p-values [ 0.05 and 0.025 ]
Hence;
0.025 < p-value < 0.05