The molar mass of the compound:
If the solution has an osmotic pressure of 8.44 torr, then the molar mass of the unknown non-electrolyte is 223.14 g.
What is osmosis?
- Osmosis is defined as the flow of solvent molecules through semi-permeable membrane.
- Osmotic pressure is the pressure applied to stop the flow of solvent molecules.
- It is a colligative property that means osmotic pressure depends on the number of solute particles .
Therefore,
π
( for electrolytes)
Where, π= Osmotic pressure
i = Van 't Hoff factor
n= moles
R= Gaseous constant = 62.363577 L torr 
T= Temperature
V= Volume of solution
Given:
T= 298K
V= 150 mL= 0.150 L
Given mass of unknown electrolyte= 15.2 mg = 15.2 x
g
Osmotic pressure= 8.44 torr
Molar mass= ?
For non-electrolytes:
πV = n RT
πV=
RT
Calculations:
Putting the given values in the formula:
8.44 x 0.150 =15.2 x
/ M x 62.36 x 298
1.266 = 282.5/M
M = 282.5/1.266
M = 223.14 g
Therefore,
The molar mass of the unknown non-electrolyte is 223.14g.
Learn more about Osmotic pressure here,
brainly.com/question/13680877
#SPJ4
Hey did you ever find the answers to this?
Answer:
electron cloud charge of manganese=-5
Explanation:
atomic number=number of elecron +neutron number
DATA
Neutron NO.=30
atomic NO.=25
e=?
A=e+n
25=e+30
e=25-30
e= -5
Answer:
23.5 grams of AlBr3 will be produced by 27.20 grams of NaBr
Explanation:
The balanced equation here is
6NaBr + 1AlO3 = 3Na2O + 2AlBr3
6 moles of NaBr are required to produce 2 moles of AlBr3
Mass of one mole of NaBr = 102.894 g/mol
Mass of one mole of AlBr3 = 266.69 g/mol
Mass of 6 moles of NaBr = 6*102.894 g/mol
Mass of two moles of AlBr3 = 2*266.69 g/mol
6*102.894 g NaBr produces 2*266.69 g of AlBr3
23.5 grams of AlBr3 will be produced by (6*102.894)/(2*266.69 )*23.5 = 27.20 grams of NaBr
Answer:
C
Explanation:
CH₄ is the formula for methane