Answer: Yes, they do.
Explanation: Neutrons and protons are made up of smaller subatomic particles. When neutons and protons get get close to each other they convert particles and bond together. This occurance is called The Strong Force.
Answer:
ΔT = Tfinal − Tinitial = 150°C − 35.0°C = 125°C
given the specific heat of iron as 0.108 cal/g·°C
heat=(100.0 g)(0.108 cal /g· °C )(125°C) =
100x 0.108x125= 1350 cal
Answer:
0.18 moles
Explanation:
Applying,
PV = nRT................... Equation 1
Where P = pressure, V = volume, n = number of moles, R = molar gas constant, T = temperature.
make n the subject of the equation
n = PV/RT............... Equation 2
Given: V = 5.3 L, T = 22 °C = (22+272) K = 295 K, P = 632 mmHg = (0.00131579×632) = 0.8316 atm, R = 0.083 L.atm/K.mol
Substitute these values into equation 2
n = (0.8316×5.3)/(0.083×295)
n = 0.18 moles
To answer this question, you need to know the concept of half-life, which is how a radioactive material decreases in mass over time.
The half life of U-235 is 703.8 million years. The first part of this problem is to find the scale factor. To do this, divide the time that has past by the half life, like this:
Now, take this scale factor and multiply it by the current mass, like this:
This number is what you add to the current mass to get the original mass. That is because the scale factor showed us that it was just over one half life. Since after one half life, the mass is cut in half, and this is over one half life, when we add to the original it will be a little over double. This equation illustrates the final addition:
I hope this helped you. Fell free to ask any further questions.
All of these are correct except the first option, as Arrhenius bases increase the concentration of hydroxide ions.