Answer:
Line 2 for part a
The system of equations for part b
and line 1 for part c
Step-by-step explanation:
Check the picture below.
so the rhombus has the diagonals of AC and BD, now keeping in mind that the diagonals bisect each, namely they cut each other in two equal halves, let's find the length of each.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{-4}~,~\stackrel{y_1}{-2})\qquad C(\stackrel{x_2}{6}~,~\stackrel{y_2}{8})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AC=\sqrt{[6-(-4)]^2+[8-(-2)]^2}\implies AC=\sqrt{(6+4)^2+(8+2)^2} \\\\\\ AC=\sqrt{10^2+10^2}\implies AC=\sqrt{10^2(2)}\implies \boxed{AC=10\sqrt{2}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AA%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5Cqquad%20%0AC%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B8%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B%5B6-%28-4%29%5D%5E2%2B%5B8-%28-2%29%5D%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B%286%2B4%29%5E2%2B%288%2B2%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B10%5E2%2B10%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B10%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BAC%3D10%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ B(\stackrel{x_1}{-2}~,~\stackrel{y_1}{6})\qquad D(\stackrel{x_2}{4}~,~\stackrel{y_2}{0})\qquad \qquad BD=\sqrt{[4-(-2)]^2+[0-6]^2} \\\\\\ BD=\sqrt{(4+2)^2+(-6)^2}\implies BD=\sqrt{6^2+6^2} \\\\\\ BD=\sqrt{6^2(2)}\implies \boxed{BD=6\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AB%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%0AD%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%5Cqquad%20%5Cqquad%20BD%3D%5Csqrt%7B%5B4-%28-2%29%5D%5E2%2B%5B0-6%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B%284%2B2%29%5E2%2B%28-6%29%5E2%7D%5Cimplies%20BD%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B6%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BBD%3D6%5Csqrt%7B2%7D%7D)
that simply means that each triangle has a side that is half of 10√2 and another side that's half of 6√2.
namely, each triangle has a "base" of 3√2, and a "height" of 5√2, keeping in mind that all triangles are congruent, then their area is,
Answer:

Step-by-step explanation:
step 1
Convert mixed number to an improper fraction

step 2
Using proportion

step 3
Convert to mixed number

38= 19+19.................
Answer:
95%.
Step-by-step explanation:
We have been given that the lifetimes of light bulbs of a particular type are normally distributed with a mean of 370 hours and a standard deviation of 7 hours.
We are asked to find the percentage of the bulbs whose lifetimes lie within 2 standard deviations to either side of the mean using empirical rule.
The empirical rule (68-95-99.7) states that approximately 68% of data points lie within 1 standard deviation of mean and 95% of data points lie within two standard deviation of mean. 99.7% of data points lie within three standard deviation of mean.
Therefore, approximately 95% of data points lie within two standard deviation of mean.