Answer:
Step-by-step explanation:
In order to write the equation of the line perpendicular to the given line, we first have to know what the slope of the given line is, and there's no way to tell by looking at it in its current form, which is standard. We need to solve that equation for y to determine the slope of that line. Solving for y:
and
3y = 4x - 5 (just change all the signs so our y term isn't negative anymore...yes, you're "allowed" to do that!) and
So we can see now that the slope of this line is 4/3. That means that the perpendicular slope is -3/4. Passing through the given point (3, 5):
* and
and
so
** and, in standard form:
4y = -3x + 29 and
3x + 4y = 29***
* : point-slope form
** : slope-intercept form
*** : standard form
Answer:
saw this question on egde its b
Answer:
Classement pays médaille d'or de cyclisme moyennes 70 %paga...
Step-by-step explanation:
Answer:
the prices were $0.05 and $1.05
Step-by-step explanation:
Let 'a' and 'b' represent the costs of the two sodas. The given relations are ...
a + b = 1.10 . . . . the total cost of the sodas was $1.10
a - b = 1.00 . . . . one soda costs $1.00 more than the other one
__
Adding these two equations, we get ...
2a = 2.10
a = 1.05 . . . . . divide by 2
1.05 -b = 1.00 . . . . . substitute for a in the second equation
1.05 -1.00 = b = 0.05 . . . add b-1 to both sides
The prices of the two sodas were $0.05 and $1.05.
_____
<em>Additional comment</em>
This is a "sum and difference" problem, in which you are given the sum and the difference of two values. As we have seen here, <em>the larger value is half the sum of the sum and difference</em>: a = (1+1.10)/2 = 1.05. If we were to subtract one equation from the other, we would find <em>the smaller value is half the difference of the sum and difference</em>: b = (1.05 -1.00)/2 = 0.05.
This result is the general solution to sum and difference problems.
This has to be done by hit and trial method. i.e. you have to checking adding which of the function from first column to function in second column will yield h(x).
The following functions yield given value of h(x).
f(x) = -2x + 3
g(x) = 7x - 9
f(x) + g(x) = -2x +3 + 7x - 9
f(x) + g(x) = 5x -6 = h(x)
So, from 1st column its the cell number 3, and from the second column its the cell number 2.