PE = mgh
where
m = mass
g = acceleration due to gravity
h = height
Given that 2 m is to .10N
we will set up a ratio & proportion
.10 x
— —
2 1
cross multiply
2x = .10(1)
divide both sides by 2
x (and the answer) = .05 N
Answer: The electric repulsion between the two protons is stronger than the gravitational attraction.
Explanation: Please see the attachments below
Answer:
Explanation:
1 ) Magnetic field due to a circular coil carrying current
= μ₀I / 2r
I is current , r is radius of the wire , μ₀ = 4π x 10⁻⁷
= 4π x 10⁻⁷ x 15 / (2 x 3.5 x 10⁻²)
= 26.9 x 10⁻⁵ T
2 )
Negative z direction .
The direction of magnetic field due to a circular coil having current is known
with the help of screw rule or right hand thumb rule.
3 )
If we decrease the radius the magnetic field will:__increase _____.
A. Increase.
Magnetic field due to a circular coil carrying current
B = μ₀I / 2 r
Here r is radius of the coil . If radius decreases magnetic field increases.
So magnetic field will increase.
Answer:
20.996 m
Explanation:
Given:
Initial velocity, 
Final velocity, 
Total time taken,
s.
∴ Acceleration is given as,
m/s²
Now, using Newton's equation of motion, we find the displacement.
Displacement is given as:

Plug in 0 for
, 4.91257 for
and 1.74 for
. Solve for
.
This gives,

Therefore, the train's displacement in the first 4.91257 s of motion is 20.996 m.