Answer: 4.90 im not 100 percent sure
Step-by-step explanation:
To find the actual discount, multiply the discount rate by the original amount 'x'. To find the sale price, subtract the actual discount from the original amount 'x' and equate this to given sale price.
The answer would be -2 or 0
Answer:
<em>The answers are for option (a) 0.2070 (b)0.3798 (c) 0.3938
</em>
Step-by-step explanation:
<em>Given:</em>
<em>Here Section 1 students = 20
</em>
<em>
Section 2 students = 30
</em>
<em>
Here there are 15 graded exam papers.
</em>
<em>
(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070
</em>
<em>
(b) Here if x is the number of students copies of section 2 out of 15 exam papers.
</em>
<em> here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15
</em>
<em>Then,
</em>
<em>
Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798
</em>
<em>
(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)
</em>
<em>
so,
</em>
<em>
Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938
</em>
<em>
Note : Here the given distribution is Hyper-geometric distribution
</em>
<em>
where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>
<h3>
Answer: Max height = 455.6 feet</h3>
========================================================
Explanation:
The general equation
y = ax^2 + bx + c
has the vertex (h,k) such that
h = -b/(2a)
In this case, a = -16 and b = 147. This means,
h = -b/(2a)
h = -147/(2*(-16))
h = 4.59375
The x coordinate of the vertex is x = 4.59375
Plug this into the original equation to find the y coordinate of the vertex.
y = -16x^2+147x+118
y = -16(4.59375)^2+147(4.59375)+118
y = 455.640625
The vertex is located at (h,k) = (4.59375, 455.640625)
The max height of the rocket occurs at the vertex point. Therefore, the max height is y = 455.640625 feet which rounds to y = 455.6 feet