Answer:
x=-1, y = 2, z = 1
Step-by-step explanation:
We are given with three equations and we are asked to find the solution to them.
2x + 2y + 3z = 5 ------------- (A)
6x + 3y + 6z = 6 --------------(B)
3x + 4y + 4z = 9 ---------------(C)
Step 1 .
multiplying equation (A) by 3 and subtracting B from the result
6x + 6y + 9z = 15
6x + 3y + 6z = 6
- - - = -
_______________
3y+3z=9
y+z=3
y=3-z ----------------- (C)
Step 2.
Substituting this value of y in equation B and C
6x + 3(3-z) + 6z = 6
6x+9-3z+6z=6
6x+3z=-3
2x+z=-1 ----------------(D)
3x + 4(3-z) + 4z = 9
3x+12-4z+4z=9
3x=-3
x=-1 ------------ (E)
Putting this value f x in (D)
2(-1)+z=-1
-2+z=-1
z=1
Now we put this value of z in equation (C)
y=3-z
y=3-1
y=2
Hence we have
x=-1, y=2 and z=1
Answer:
about 1.18 is the closest is what i got
Step-by-step explanation:
Answer:
Option A. y = x² + 7x + 10
Step-by-step explanation:
We'll begin calculating the roots of the equation from the graph.
The roots of the equation on the graph is where the curve passes through the x-axis.
The curve passes through the x-axis at –5 and –2
Next, we shall determine the equation. This can be obtained as follow:
x = –5 or x = –2
x + 5 = 0 or x + 2 = 0
(x + 5)(x + 2) = 0
Expand
x(x + 2) + 5(x + 2) = 0
x² + 2x + 5x + 10 = 0
x² + 7x + 10 = 0
y = x² + 7x + 10
Thus, the function that describes the graph is y = x² + 7x + 10
The term without a variable is the constant, so the answer is 6
Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)