Step-by-step explanation:
whenever a complex number is a root of a polynomial with real coefficients, its complex conjugate is also a root of that polynomial. as an example, we'll find the roots of the polynomial..
x^5 - x^4 + x^3 - x^2 - 12x + 12.
the fifth-degree polynomial does indeed have five roots; three real, and two complex.
three squared minus two thirds

three square = 3 x 3 = 9

Least common factor of 1 and 3 is 3

Three squared minus two third is twenty five by three.
Answer: Length: 16, Width = 13. Enjoy math while its not too complicated
Given that the roots of the equation x^2-6x+c=0 are 3+8i and 3-8i, the value of c can be obtained as follows;
taking x=3+8i and substituting it in our equation we get:
(3+8i)^2-6(3+8i)+c=0
-55+48i-18-48i+c=0
collecting the like terms we get:
-55-18+48i-48i+c=0
-73+c=0
c=73
the answer is c=73
Answer: The answer that I got was J.