Answer:
9.89 m/s.
Explanation:
Given that,
The radius of the circular arc, r = 25 m
The acceleration of the vehicle is 0.40 times the free-fall acceleration i.e.,a = 0.4(9.8) = 3.92 m/s²
Let v is the maximum speed at which you should drive through this turn. It can be solved as follows :

So, the maximum speed of the car should be 9.89 m/s.
If the intelligent aliens on that distant planet could receive our signal, and then reply to us INSTANTLY with no delay, then our Scientists on Earth would hear the response <em>eight years after</em> they sent their original greeting.
Light and radio waves both travel through space at the same speed. If our scientists sent a radio transmission to that distant planet, it would take four years for the radio message to get there and be heard. Any response would take four years to travel back to us. If the aliens didn't dilly-dally and sent their response immediately, the round trip would total up to eight years.
<span>C. A concave lens can only form a virtual image, because they are thinner in the middle and thicker around the edges.</span>
Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0