Answer:
I = 0.44 A
Explanation:
The magnetic force on a conductor is given by the expression
F = I L x B
Where bold letters indicate vectors, I is the current, L is the vector in the direction of the current, and B is the magnetic field
Since the force is maximum, the wire must be perpendicular to the magnetic field, therefore
F = I L B sin 90
I = F / L B
Let's calculate
I = 1.2 / 1.5 1.8
I = 0.44 A
Answer:
Gravity and
Air resistance
Explanation:
The two forces acting on a skydiver are gravitational force and air resistance.
Gravitational force is a force that tends to pull all massive bodies towards the center of the earth. It works on all bodies that has mass. The larger or bigger the mass, the more the pull of gravity on the body.
Air resistance is the drag of air on a body as it passes to it. It is resisting force.
- When a sky diver jumps out of a plane, he/she encounters both gravity and air resistance.
- It soon balances both force and attain terminal velocity.
- Air resistance is a frictional force that opposes motion.
- This frictional force pushes in the opposite direction of motion
- Motion direction is downward due to the celerity caused by gravity.
Answer:
Time taken, t = 4.86 seconds
Explanation:
Given that,
Acceleration of a particular automobile, 
Initial speed of the automobile, u = 75 km/h = 20.83 m/s
Final speed of the automobile, v = 110 km/h = 30.55 m/s
We need to find the time taken to accelerate from u to v. Let t is the time taken. It can be calculate as :


t = 4.86 seconds
So, the time taken by the automobile is 4.86 seconds. Hence, this is the required solution.
Explanation:
It is given that,
Length of the copper wire, l = 4.4 m
Diameter of copper wire, d = 1.3 mm = 0.0013 m
Radius of copper wire, r = 0.00065 m
The resistivity of the copper wire, 
We need to find the resistance of the copper wire. It is given by :


R =0.055 ohms
So, the resistance of the copper wire is 0.055 ohms. Hence, this is the required solution.