1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
4 years ago
7

a proton of mass 1 u travelling with a speed of 3.6 x 10 ^4 m/s has an elastic head on collision with a helium nucleus initially

at rest. Assuming the collision takes place in nearly empty space (that is no external forces are involved so momentum will be conserved), what are the velocities of the proton and helium after the collision?
Physics
1 answer:
CaHeK987 [17]4 years ago
7 0

Answer:

Velocity of the helium nuleus  = 1.44x10⁴m/s

Velocity of the proton = 2.16x10⁴m/s

Explanation:

From the conservation of linear momentum of the proton collision with the He nucleus:

P_{1i} + P_{2i} = P_{1f} + P_{2f] (1)

<em>where P_{1i}: is the proton linear momentum initial, P_{2i}: is the helium nucleus linear momentum initial, P_{1f}: is the proton linear momentum final, P_{2f}: is the helium nucleus linear momentum final </em>

<u>From (1):</u>

m_{1}v_{1i} + 0 = m_{1}v_{1f} + m_{2}v_{2f} (2)

<em>where m₁ and m₂: are the proton and helium mass, respectively, v_{1i} and v_{2i}: are the proton and helium nucleus velocities, respectively, before the collision, and v_{1f} and v_{2f}: are the proton and helium nucleus velocities, respectively, after the collision </em>

By conservation of energy, we have:

K_{1i} + K_{2i} = K_{1f} + K_{2f} (3)

<em>where K_{1i} and  K_{2i}: are the kinetic energy for the proton and helium, respectively, before the colission, and K_{1f} and  K_{2f}: are the kinetic energy for the proton and helium, respectively, after the colission </em>

<u>From (3):</u>

\frac{1}{2}m_{1}v_{1i}^{2} + 0 = \frac{1}{2}m_{1}v_{1f}^{2} + \frac{1}{2}m_{2}v_{2f}^{2} (4)  

<u>Now we have two equations: (2) ad (4), and two incognits: v_{1f} and v_{2f}. </u>

Solving equation (2) for v_{1f}, we have:

v_{1f} = v_{1i} -\frac{m_{2}}{m_{1}} v_{2f} (5)

<u>From getting (5) into (4) we can obtain the v_{2f}:</u>

v_{2f}^{2} \cdot (\frac{m_{2}^{2}}{m_{1}} + m_{2}) - 2v_{2f}v_{1i}m_{2} = 0

v_{2f}^{2} \cdot (\frac{(4u)^{2}}{1u} + 4u) - v_{2f}\cdot 2 \cdot 3.6 \cdot 10^{4} \cdot 4u = 0

From solving the quadratic equation, we can calculate the velocity of the helium nucleus after the collision:

v_{2f} = 1.44 \cdot 10^{4} \frac{m}{s} (6)

Now, by introducing (6) into (5) we get the proton velocity after the collision:

v_{1f} = 3.6 \cdot 10^{4} -\frac{4u}{1u} \cdot 1.44 \cdot 10^{4}

v_{1f} = -2.16 \cdot 10^{4} \frac{m}{s}

The negative sign means that the proton is moving in the opposite direction after the collision.

I hope it helps you!

You might be interested in
Which of the following statements is true?
kupik [55]

Answer:

2. The hydrogen atom has quantized energy levels.

Explanation:

The Bohr model of the atom states that the structure of the atom is quantized, that is, that electrons can only orbit the nucleus in specific orbits with a fixed radius. Therefore, the electron cannot be in energy levels that do not correspond to these quantized levels.

4 0
4 years ago
We can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top
frez [133]

We need to consider for this exercise the concept Drag Force and Torque. The equation of Drag force is

F_D = c_D A \frac{\rho V^2}{2}

Where,

F_D = Drag Force

c_D = Drag coefficient

A = Area

\rho= Density

V = Velocity

Our values are given by,

c_D = 0.5 (That is proper of a cone-shape)

A = 9m^2

\rho = 1.2Kg/m^3

V = 6.5m/s

Part A ) Replacing our values,

F_D = 0.5*9*\frac{1.2*6.5^2}{2}

F_D = 114.075N

Part B ) To find the torque we apply the equation as follow,

\tau = F*d

\tau = (114.075N)(7)

\tau = 798.525N.m

3 0
4 years ago
Why does he have maximum potential energy at this point?
yan [13]
He is going the fastest speed
7 0
2 years ago
What happens when the temperature of a substance decreases significantly?
sweet [91]

Answer is .... A I think

7 0
3 years ago
Read 2 more answers
What happen to internal energy of water at 0 degree?
miss Akunina [59]

Answer:

internal energy apparently increases.

4 0
3 years ago
Other questions:
  • ) is it possible for one component of a vector to be zero, while the vector itself is not zero?
    13·1 answer
  • Does displacement must be straight and must include direction
    15·1 answer
  • Which statement best describes the polarization of light
    7·1 answer
  • An athlete stretches a spring an extra 40.0 cm beyond its initial length. how much energy has he transferred to the spring, if t
    6·1 answer
  • What happens when light hits a shiny or smooth surface?
    12·2 answers
  • How’d the turtle cross the road
    15·2 answers
  • Two people are standing on a 3.12-m-long platform, one at each end. The platform floats parallel to the ground on a cushion of a
    11·2 answers
  • A bus start from rest the aaceleration of the bus after 5 seconds become 10m/s2 find the final velocity of the bus
    5·1 answer
  • PLSSS HELP WILL MARK BRAINLIEST
    9·1 answer
  • What are the symmetry operations of molecule AB4, where the molecule b lies at the center of the square and A lies at the center
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!