Answer:
The force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Explanation:
F₂₁ = 
Where;
F₂₁ is the vector force on q₁ due to q₂
K is the coulomb's constant = 8.99 X 10⁹ Nm²/C²
r₂₁ is the unit vector
|r₂₁| is the magnitude of the unit vector
|q₁| is the absolute charge on point charge one
|q₂| is the absolute charge on point charge two
r₂₁ = [(9-5)i +(7.4-(-4))j] = (4i + 11.5j)
|r₂₁| = 
(|r₂₁|)² = 148.25

= 0.050938(0.19107i + 0.54933j) N
= (0.00973i + 0.02798j) N
Therefore, the force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Answer:
If the distance is doubled, the force of gravity between the two bodies is one-fourth as strong as before
Explanation:
The force of gravity between two bodies depends on the mass and distance. But we will focus on distance since that's what the question asks
Therefore, the force of gravity decreases as distance between the bodies increases.
Simple reaction time involves selecting a
specific and correct response from several choices when presented with several
different stimuli. This is very important because historically, this was the
first indicators of intelligence pioneered by Francis Galton. To measure one’s
intelligence is to know how he quick a person could respond to the stimulus
with an already expected response wherein the stimulus is given unknown to the
receiver. In other terms, the intelligence is measured on how quick a person
could grasp certain concepts and how he could think fast and answer them
correctly.
<span> </span>
Answer:
18 m/s
Explanation:
Given that,
Speed of river is 8 m/s due South
From the shore, you see a boat moving South with a speed of 10 m/s. Both boat and river are moving in same direction. The resultant velocity will add up.
v = 10 m/s + 8 m/s
v = 18 m/s
Hence, the rowers are moving with a speed of 18 m/s.