I would say the second option
Hope this helps *smiles*
Answer:
0.00757 grams
Explanation:
Find the molar mass of the compound: which is 60.05.
The molar mass is basically just the sum of all the atomic masses of each of the elements.
Then multiply the molar mass by the number of moles in the compound, which is 1.26 x 10^-4 moles.
Your answer should be 0.00757 grams.
Answer: There are about 0.28 molecules in 43.9 g of carbon tetrachloride. If you are rounding up, it would be 0.3
Explanation:
Answer:
Polarizing power refers to an atoms ability to pull an electron toward it, polarizing the atom the electron comes from. Since cations are positive, they are able to attract electrons toward themselves. Anions are negative and so do not attract more electrons.
Therefore, Be2+ has a higher polarizing power because it has a higher quantitiy of protons, hence a higher polarizing power.
Answer:
cesium
In particular, cesium (Cs) can give up its valence electron more easily than can lithium (Li). In fact, for the alkali metals (the elements in Group 1), the ease of giving up an electron varies as follows: Cs > Rb > K > Na > Li with Cs the most likely, and Li the least likely, to lose an electron
Explanation: