<u>Answer:</u> The amount of heat produced by the reaction is -21.36 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:
![2SO_2(g)+O_2(g)\rightarrow 2SO_3(g)](https://tex.z-dn.net/?f=2SO_2%28g%29%2BO_2%28g%29%5Crightarrow%202SO_3%28g%29)
The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(SO_3(g))})]-[(2\times \Delta H_f_{(SO_2(g))})+(1\times \Delta H_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28SO_3%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:
![\Delta H_f_{(SO_2(g))}=-296.8kJ/mol\\\Delta H_f_{(SO_3(g))}=-395.7kJ/mol\\\Delta H_f_{(O_2(g))}=0kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H_f_%7B%28SO_2%28g%29%29%7D%3D-296.8kJ%2Fmol%5C%5C%5CDelta%20H_f_%7B%28SO_3%28g%29%29%7D%3D-395.7kJ%2Fmol%5C%5C%5CDelta%20H_f_%7B%28O_2%28g%29%29%7D%3D0kJ%2Fmol)
Putting values in above equation, we get:
![\Delta H_{rxn}=[(2\times (-395.7))]-[(2\times (-296.8))+(1\times (0))]\\\\\Delta H_{rxn}=-197.8kJ/mol](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-395.7%29%29%5D-%5B%282%5Ctimes%20%28-296.8%29%29%2B%281%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-197.8kJ%2Fmol)
To calculate the number of moles, we use ideal gas equation, which is:
![PV=nRT](https://tex.z-dn.net/?f=PV%3DnRT)
where,
P = pressure of the gas = 1.00 bar
V = Volume of the gas = 2.67 L
n = number of moles of gas = ?
R = Gas constant = ![0.0831\text{ L. bar }mol^{-1}K^{-1}](https://tex.z-dn.net/?f=0.0831%5Ctext%7B%20L.%20bar%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D)
T = temperature of the mixture = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
Putting values in above equation, we get:
![1.00bar\times 2.67L=n\times 0.0831\text{ L. bar }mol^{-1}K^{-1}\times 298K\\\\n=\frac{1\times 2.67}{0.0831\times 298}=0.108mol](https://tex.z-dn.net/?f=1.00bar%5Ctimes%202.67L%3Dn%5Ctimes%200.0831%5Ctext%7B%20L.%20bar%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D%5Ctimes%20298K%5C%5C%5C%5Cn%3D%5Cfrac%7B1%5Ctimes%202.67%7D%7B0.0831%5Ctimes%20298%7D%3D0.108mol)
To calculate the heat released of the reaction, we use the equation:
![\Delta H_{rxn}=\frac{q}{n}](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Cfrac%7Bq%7D%7Bn%7D)
where,
q = amount of heat released = ?
n = number of moles = 0.108 moles
= enthalpy change of the reaction = -197.8 kJ/mol
Putting values in above equation, we get:
![-197.8kJ/mol=\frac{q}{0.108mol}\\\\q=(-197.8kJ/mol\times 0.108mol)=-21.36kJ](https://tex.z-dn.net/?f=-197.8kJ%2Fmol%3D%5Cfrac%7Bq%7D%7B0.108mol%7D%5C%5C%5C%5Cq%3D%28-197.8kJ%2Fmol%5Ctimes%200.108mol%29%3D-21.36kJ)
Hence, the amount of heat produced by the reaction is -21.36 kJ