If a gas in a balloon occupies 2.25 L at 298 K and 300 kPa, the temperature at which the balloon expand to 3.50L and 2.17 atm is 345.23K.
<h3>How to calculate temperature?</h3>
The temperature of an ideal gas can be calculated using the following formula:
P1V1/T1 = P2V2/T2
Where;
- P1 = initial pressure
- P2 = final pressure
- V1 = initial volume
- V2 = final volume
- T1 = initial temperature
- T2 = final temperature
According to the information given in this question;
- P1 = 300kpa = 2.96 atm
- P2 = 2.17 atm
- V1 = 2.25L
- V2 = 3.50L
- T1 = 298K
- T2 = ?
2.96 × 2.25/298 = 2.17 × 3.5/T2
0.022T2 = 7.595
T2 = 7.595 ÷ 0.022
T2 = 345.23K
Therefore, if a gas in a balloon occupies 2.25 L at 298 K and 300 kPa. the temperature at which the balloon expand to 3.50L and 2.17 atm is 345.23K.
Learn more about temperature at: brainly.com/question/11464844
The answer is B. Fungi,Protists
Radioactive isotope, also called radioisotope, radionuclide, or radioactive nuclide, any of several species of the same chemical element with different masses whose nuclei are unstable and dissipate excess energy by spontaneously emitting radiation in the form of alpha, beta, and gamma rays.
I can give you a clue of getting mass. if it is the atomic number is even multiply by 2 but if the atomic number is odd multiply by 2 and add 1
sodium atomic number = 11 so mass = 11*2 +1 = 23
oxygen. atomic number = 8 so mass = 8*2 = 16
carbon atomic number = 6 so mass = 6*2 = 12
I think that work is being done on the books because they are being moved to their proper location and they will be sorted properly rather than lying on a table. Without lifting or carrying, you could sort the books by their genre or title name on the bookshelf so it will be sorted much more efficiently.
I’m not sure if this is the answer you are looking for but I hope it helps :)