Answer:
Sodium ion ( Na+) is known to have no smell at all but however appears salty which is the reason why the compound Sodium Chloride has the same type of taste.
Hydrogen ions ( H+) are known to have no taste which implies it being tasteless. It is also important to note that it has no smell too when perceived (odorless).
Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
Answer: 4.) CH3O is the answer, which stands for Methoxide.
Explanation:
Answer:
pH = 6.8124
Explanation:
We know pH decreases with increase in temperature.
At room temperature i.e. 25⁰c pH of pure water is equal to 7
We know
Kw = [H⁺][OH⁻]...............(1)
where Kw = water dissociation constant
At equilibrium [H⁺] = [OH⁻]
So at 37⁰c i.e body temperature Kw = 2.4 × 10⁻¹⁴
From equation (1)
[H⁺]² = 2.4 × 10⁻¹⁴
[H⁺] = √2.4 × 10⁻¹⁴
[H⁺] = 1.54 × 10⁻⁷
pH = - log[H⁺]
= - log{1.54 × 10⁻⁷}
= 6.812