Use Henderson Hasselbache
PH=pka+log([salt]/[acid])
Pka=-log(ka)
-log(1.4x10^-4)= 3.85
log(.83/.14)= .77
3.85+.77= 4.62
PH=4.62
Answer:
always begins with a capital letter
Explanation:
quizlet
it depends on the widths of the recesses, and if it is causing the shelf to fracture and collapse into the sea, then a massive iceberg could be called from the life she,f and the ice shelf are way more important because it holds it up
Answer:
a. Moles in the vessel = 1.85 moles of the gas
b. 1.11x10²⁴ molecules are in the vessel
Explanation:
a.It is possible to determine moles of a gas using the general law of gases:
PV = nRT
<em>Where P is pressure: 5.00atm; V is volume = 9.00L; R is gas constant: 0.082atmL/molK; T is absolute temperature: 273.15K +24.0 = 297.15K</em>
<em />
Computing the values:
PV / RT = n
5.00atm* 9.00L / 0.082atmL/molK*297.15K = n
<h3>Moles in the vessel = 1.85 moles of the gas</h3><h3 />
b. With Avogadro's number we can convert moles of any compound to molecules thus:
Avogadro's number = 6.022x10²³ molecules / mole
1.85moles ₓ (6.022x10²³ molecules / mole) =
<h3>1.11x10²⁴ molecules are in the vessel</h3>
Answer:
The solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Explanation:
Step 1: Given data
The volume of water sample = 46.0 mL.
The weight of the mineral compound X after evaporation, drying, and washing = 0.87 g.
Step 2: Calculate the solubility of X in water
46.00 mL of water sample contains 0.87 g of the mineral compound X.
To calulate how many grams of the mineral compound 1.0 mL of water sample contains:
0.87 g/46.0 mL = 0.0189 g.
This means the solubility of the mineral compound X in the water sample is 0.0189 g/mL.