1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
3 years ago
13

Pretty please help this work is hard

Mathematics
1 answer:
Arlecino [84]3 years ago
6 0

Answer:

Parentheses, exponents, multiplication and division, and addition and subtraction

Step-by-step explanation:

You can remember this order by using PEMDAS. PEMDAS stands for parentheses, exponents, multiplication, division, addition, and subtraction, in that order. First up should be parentheses, then exponents, then multiplication and division, and finally addition and subtraction.

You might be interested in
Please help! I’ll give brainliest!
anzhelika [568]

Answer:

y=3x+3

Step-by-step explanation:

the line doesnt connect with a negative so the first and third arent it. And the line cross's with a 3 not an x so the seconds on isnt the answer. Leaving the last one the answer.

5 0
3 years ago
Determine the number and type of roots for the equation using one of the given roots. Then find each root. (inclusive of imagina
dmitriy555 [2]

Step-by-step explanation:

<em>"Determine the number and type of roots for the equation using one of the given roots. Then find each root. (inclusive of imaginary roots.)"</em>

Given one of the roots, we can use either long division or grouping to factor each cubic equation into a binomial and a quadratic.  I'll use grouping.

Then, we can either factor or use the quadratic equation to find the remaining two roots.

1. x³ − 7x + 6 = 0; 1

x³ − x − 6x + 6 = 0

x (x² − 1) − 6 (x − 1) = 0

x (x + 1) (x − 1) − 6 (x − 1) = 0

(x² + x − 6) (x − 1) = 0

(x + 3) (x − 2) (x − 1) = 0

The remaining two roots are both real: -3 and +2.

2. x³ − 3x² + 25x + 29 = 0; -1

x³ − 3x² + 25x + 29 = 0

x³ − 3x² − 4x + 29x + 29 = 0

x (x² − 3x − 4) + 29 (x + 1) = 0

x (x − 4) (x + 1) + 29 (x + 1) = 0

(x² − 4x + 29) (x + 1) = 0

x = [ 4 ± √(16 − 4(1)(29)) ] / 2

x = (4 ± 10i) / 2

x = 2 ± 5i

The remaining two roots are both imaginary: 2 − 5i and 2 + 5i.

3. x³ − 4x² − 3x + 18 = 0; 3

x³ − 4x² − 3x + 18 = 0

x³ − 4x² + 3x − 6x + 18 = 0

x (x² − 4x + 3) − 6 (x − 3) = 0

x (x − 1)(x − 3) − 6 (x − 3) = 0

(x² − x − 6) (x − 3) = 0

(x − 3) (x + 2) (x − 3) = 0

The remaining two roots are both real: -2 and +3.

<em>"Find all the zeros of the function"</em>

For quadratics, we can factor using either AC method or quadratic formula.  For cubics, we can use the rational root test to check for possible rational roots.

4. f(x) = x² + 4x − 12

0 = (x + 6) (x − 2)

x = -6 or +2

5. f(x) = x³ − 3x² + x + 5

Possible rational roots: ±1/1, ±5/1

f(-1) = 0

-1 is a root, so use grouping to factor.

f(x) = x³ − 3x² − 4x + 5x + 5

f(x) = x (x² − 3x − 4) + 5 (x + 1)

f(x) = x (x − 4) (x + 1) + 5 (x + 1)

f(x) = (x² − 4x + 5) (x + 1)

x = [ 4 ± √(16 − 4(1)(5)) ] / 2

x = (4 ± 2i) / 2

x = 2 ± i

The three roots are x = -1, x = 2 − i, x = 2 + i.

6. f(x) = x³ − 4x² − 7x + 10

Possible rational roots: ±1/1, ±2/1, ±5/1, ±10/1

f(-2) = 0, f(1) = 0, f(5) = 0

The three roots are x = -2, x = 1, and x = 5.

<em>"Write the simplest polynomial function with integral coefficients that has the given zeros."</em>

A polynomial with roots a, b, c, is f(x) = (x − a) (x − b) (x − c).  Remember that imaginary roots come in conjugate pairs.

7. -5, -1, 3, 7

f(x) = (x + 5) (x + 1) (x − 3) (x − 7)

f(x) = (x² + 6x + 5) (x² − 10x + 21)

f(x) = x² (x² − 10x + 21) + 6x (x² − 10x + 21) + 5 (x² − 10x + 21)

f(x) = x⁴ − 10x³ + 21x² + 6x³ − 60x² + 126x + 5x² − 50x + 105

f(x) = x⁴ − 4x³ − 34x² + 76x − 50x + 105

8. 4, 2+3i

If 2 + 3i is a root, then 2 − 3i is also a root.

f(x) = (x − 4) (x − (2+3i)) (x − (2−3i))

f(x) = (x − 4) (x² − (2+3i) x − (2−3i) x + (2+3i)(2−3i))

f(x) = (x − 4) (x² − (2+3i+2−3i) x + (4+9))

f(x) = (x − 4) (x² − 4x + 13)

f(x) = x (x² − 4x + 13) − 4 (x² − 4x + 13)

f(x) = x³ − 4x² + 13x − 4x² + 16x − 52

f(x) = x³ − 8x² + 29x − 52

5 0
2 years ago
Write using algebra.<br><br> Jimmy ran m miles in t minutes. What was his speed?
Ilya [14]
Speed = m x t. as the equation
6 0
3 years ago
Ok just answer this and im gonna mark as brainliest
suter [353]
Paperbacks and notebooks
3 0
3 years ago
JOD, hele he earns $8 per hour. His employer always rounds up to the nearest quarter of an hour. For example, if
Nesterboy [21]

Answer:

where is the question at?

3 0
2 years ago
Other questions:
  • The table shows the amount of red paint that can be added to different amounts of white paint while making a custom paint color:
    7·1 answer
  • A/-8+15greater than 23
    13·1 answer
  • NEED HELP! What is the first step to solve the equation a=2d/t^2 , where a is acceleration, d is the distance, and t is time. If
    13·1 answer
  • Olive walks at a rate of 4 miles per hour she lives 2 miles from the mews station how long wil it talk her to walk home from the
    6·1 answer
  • What is the volume of a pyramid with base of 11cm and a hight of 12cm?
    13·2 answers
  • Find the volume of the sphere. Either enter the exact terms of pi or use 22/7 for pi.The radius is 1/4 !
    10·1 answer
  • Identify corresponding sides RGK=MQB
    10·1 answer
  • Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
    14·1 answer
  • Please help me with this
    11·1 answer
  • PLEASE HELP FAST ILL GVIE YOU AS MUCH POINTS JUST LET ME KNOW IF BOTH OF THESE ARE CORRECT THX
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!