Answer: Mutations are important to the evolution of a species because is creates new DNA for a certain gene, creating a new allele.
Hope this helps!!! Good luck!!! ;)
Answer:
Qura'an is what makes my day, I read it every morning and it makes me relaxed. I love reading the Qura'an. Do dua for me because I hope I am gonna memorize it after I finish reading it with tajweed.
Explanation:
Answer:
The correct answer is:
<em>(1) It is important that the sample is dissolved in just enough hot solvent. </em>
Explanation:
The process of recrystallization is important to eliminate the impurities and to obtain better crystals of the solid. The solvent used to perform the recrystallization must have a high dissolution power of the substance to be recrystallized and a low dissolution power of the impurities. This is in order to eliminate most impurities. Furthermore, <em>It is important that the sample is dissolved in just enough hot solvent </em>because this should be easy to remove after the recrystallization and the crystal should form easily when the solution cools. Also, it is better to add the hot solvent to solubilize the crystals and keep the impurities insoluble, instead of adding the cold solvent and heating the solution. Additionally, the process of cooling the solution must be done slowly to obtain large and fewer crystals. A fast ice-cooling will form smaller crystals.
I just needed the points. Have a nice day luv!!!!!!!!!
✨❤️◑﹏◐❤️✨
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>