Density is weight by volume.
First. If you divide the weight by density you can find the volume
Second you must convert the ML in to Liters.

1L=1000ml


0.38214 Liters.
Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.
The answer is-
is octahedral in electronic and molecular geometry with 6 Fluorine atoms bonded to central atom S.
Lewis structures are the diagrams in which the valence electrons of the atoms of a compound are arranged around the atoms showing the bonding between the atom and the lone pair of electrons existing in the molecule.
Determine the molecular geometry of
.
- Valence Shell Electron Pair Repulsion theory is commonly known as VSEPR theory and it helps to predict the geometry of molecules.
- According to this theory, electrons are arranged around the central atom of the molecule in such a way that there is minimum electrostatic repulsion between these electrons.
- Now, calculate the total number of valence electrons in
.

Valence electrons of S = 6
Valence electrons of F = 7
Thus, the valence electrons in
are-

- The Lewis structure of
is - (Image attached). - In the structure, the number of atoms bonded to central atom (S) = 6.
- Number of non-bonding electron pairs on the central atom = 0 (as all the valence electrons are bonded to F).
- Electronic geometry in case of 6 bond pairs is octahedral.
- Molecular geometry us also octahedral with bond angles 90°.
- Central atom is sp3d2 hybridised.
is a non-polar molecule.
To learn more about Lewis structures visit:
brainly.com/question/12307841?referrer=searchResults
#SPJ4
Answer:
0.55 atm
Explanation:
First of all, we need to calculate the number of moles corresponding to 1.00 g of carbon dioxide. This is given by

where
m = 1.00 g is the mass of the gas
Mm = 44.0 g/mol is the molar mass of the gas
Substituting,

Now we can find the pressure of the gas by using the ideal gas law:

where
p is the gas pressure
V = 1.00 L is the volume
n = 0.0227 mol is the number of moles
R = 0.082 L/(atm K mol) is the gas constant
T = 25.0 C + 273 = 298 K is the temperature of the gas
Solving the formula for p, we find

They flow through the inslation of the house .
they both help things travel