Answer:
The order of the differential equation to be formed is equal to the number of arbitrary constants present in the equation of the family of curves.
Consider the equation f ( x, y ,c1 ) = 0 -------(1) where c1 is the arbitrary constant. We form the differential equation from this equation. For this, differentiate equation (1) with respect to the independent variable occur in the equation.
Eliminate the arbitrary constant c from (1) and its derivative. Then we get the required differential equation.
Suppose we have f ( x, y ,c1 ,c2 ) = 0 . Here we have two arbitrary constants c1 and c2 . So, find the first two successive derivatives. Eliminate c1 and c2 from the given function and the successive derivatives. We get the required differential equation.
Note
The order of the differential equation to be formed is equal to the number of arbitrary constants present in the equation of the family of curves.
If you would like to know which phrases could represent the expression k - 4, you can do this using the following step:
a number ... k
A. 4 - k
B. k - 4
C. k - 4
D. 4 - k
The correct results would be B. and C.
6.4 - 2x - 6.63x = 610.5
subtract 6.4 from both sides
-2x -6.63x =604.1
collect like terms
-8.63x = 604.1
divide both sides by -8.63
x= -70
Answer:
Step-by-step explanation:
Without a second equation relating x and y, we can solve 3x - 1/2y = 2 ONLY for x in terms of y or for y in terms of x:
x in terms of y: Multiply all three terms of 3x - 1/2y = 2 by 2, to eliminate the fraction: 6x - y = 4. Now add y to both sides to isolate 6x: 6x = 4 + y.
Last, divide both sides by 6 to isolate x:
x = (4 + y)/6
y in terms of x:
y = 6x - 4
If you want a numerical solution, please provide another equation in x and y and solve the resulting system.
Answer:
Monomial
Step-by-step explanation:
I think because it has only one term