Answer:
I think it should be about maybe the times of the dinosaurs
also I think 23 to 16 billion years
Explanation:
No explanation sorry if im wrong
Answer:
1. balance observation using "how much" = 5. quantitative instrument
2. graduated cylinder = 4. quantitaive instrument of volume
3. hypothesis proposed explanation= 7. qualitative descriptive observation
4. unit of volume= L
6. kg = primary unit of mass
Explanation:
there seem to be some typo error in uploading question but still it was clear to answer.
Answer:
Metallic character decreases, and electronegativity increases.
Explanation:
Hello!
In this case, according to the organization of the periodic table, we can see that from left to right, the electronegativity increases as nonmetals are able to attract electrons more easily than metals.
Moreover, in contrast to the previous periodic trend, the metallic character decreases from left to right because the elements tend to decrease the capacity to lose electrons and consequently start attracting them.
Thus, the answer would be: "Metallic character decreases, and electronegativity increases".
Best regards!
Answer: 2.5°C
Explanation:
Initial volume V1 = 5.38 liters
Initial temperature T1 = 36.0°C
Convert temperature in Celsius to Kelvin
(32°C + 273= 305K)
Final temperature T2 = ?
Final volume V2 = 4.68 liters
According to Charle's law, the volume of a fixed mass of a gas is directly proportional to the temperature.
Thus, Charles' Law is expressed as: V1/T1 = V2/T2
5.38/305 = 4.86/T2
To get the value of T2, cross multiply
5.38 x T2 = 4.86 x 305
5.38T2 = 1482.3
Divide both sides by 5.38
5.38T2/5.38 = 1482.3/5.38
T2 = 275.5K
Convert 275.5K to Celsius
(275.5K - 273K = 2.5°C)
Thus, the final temperature is 2.5°C
Mathematical formula of Ideal Gas Law is PV=nRT
where: P-pressure,
V-volume
n-number of moles; m/MW
T-Temperature
m-mass
d-density ; m/V
MW-Molecular Weight
R- Ideal Gas constant. If the units of P,V,n & T are atm, L, mol & K respectively, the value of R is 0.0821 L x atm / K x mol
Substituting the definitions to the original Gas equation becomes:
d= P x MW / (RxT)
Solution : d= .90atm x 28 g/mol (CO) / 0.0821Lxatm / mol x K x 323 K
d = 25.2 g / 26000 mL
d = .0.00096 g/mL is the density of CO under the new conditions