<em>Please</em><em> </em><em>refer</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>image</em><em> </em><em>for</em><em> </em><em>the</em><em> </em><em>answer</em>
Answer:
1 - If method I is used, population of generalization will include all those people who may have varying exercising habits or routines. They may or may not have a regular excersing habit. In his case sample is taken from a more diverse population
2 - Population of generalization will include people who will have similar excersing routines and habits if method II is used since sample is choosen from a specific population
Step-by-step explanation:
Past excercising habits may affect the change in intensity to a targeted excersise in different manner. So in method I a greater diversity is included and result of excersing with or without a trainer will account for greater number of variables than method II.
Let h = the number of horses in the field
Let c = number of cows in the field
There are 2 more horses than cows in the field. Therefore
h = c + 2
or
c = h - 2 (1)
There are 15 animals in the field. Therefore
h + c = 15 (2)
Substitute (1) into (2).
h + (h - 2) = 15
2h - 2 = 15
Answer:
The correct equation is
2h - 2 = 15
Answer:
-2
Step-by-step explanation:
Start with the vertex form of the equation of a parabola: y - k = a(x - h)^2
Here h = -2, k = -3, x = -1, y = -5. Find a:
-5 - [-3] = a(-1 - [-2])^2, or
-5 + 3 = a(1)^2, or
-2 = a
The unknown coefficient is -2.