Answer:
Fd
Explanation:
Work is force times distance. If you push on an object really hard but it does not budge, you have still performed no work on it, because anything times zero is still zero.
The correct answer to this is (A. Units Only).
It shows that there is a velocity of 35, but the units are missing.
Answer:
<h3>The answer is 8 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>8 kg</h3>
Hope this helps you
Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)