Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec
Big band is music group (a group of people who perform instrumental and/or vocal music ) playing jazz or jazz-influenced popular music and which was popular during the Swing Era from the mid-1930s until the late 1940s. These big bands contained saxophones, trumpets, trombone and other instruments and typically consisted of approximately 12 to 25 musicians.
The answer is 1,600 J.
A work (W) can be expressed as a product of a force (F) and a
distance (d):
W = F · d<span>
We have:
W = ?
F = 20 N = 20 kg*m/s</span>²
d = 80 m
_____
W = 20 kg*m/s² * 80 m
W = 20 * 80 kg*m/s² * m
W = 1600 kg*m²/s²
W = 1600 J