The value of the derivative at the maximum or minimum for a continuous function must be zero.
<h3>What happens with the derivative at the maximum of minimum?</h3>
So, remember that the derivative at a given value gives the slope of a tangent line to the curve at that point.
Now, also remember that maximums or minimums are points where the behavior of the curve changes (it stops going up and starts going down or things like that).
If you draw the tangent line to these points, you will see that you end with horizontal lines. And the slope of a horizontal line is zero.
So we conclude that the value of the derivative at the maximum or minimum for a continuous function must be zero.
If you want to learn more about maximums and minimums, you can read:
brainly.com/question/24701109
Answer:
factors
Step-by-step explanation:
Answer: The correct option is A, itis the product of the initial population and the growth factor after h hours.
Explanation:
From the given information,
Initial population = 1000
Increasing rate or growth rate = 30% every hour.
No of population increase in every hour is,

Total population after h hours is,

It is in the form of,

Where
is the initial population, r is increasing rate, t is time and [tex(1+r)^t[/tex] is the growth factor after time t.
In the above equation 1000 is the initial population and
is the growth factor after h hours. So the equation is product of of the initial population and the growth factor after h hours.
Therefore, the correct option is A, itis the product of the initial population and the growth factor after h hours.