1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
3

An object initially at rest falls from a height H until it reaches the ground. Two of the following energy bar charts represent

the kinetic energy K and gravitational potential energy Ug of the object-Earth system at two positions. The first position is when the object is initially released, and the second position is when the object is halfway between its release point and the ground. Which two charts could represent the mechanical energy of the object-Earth system? Select two answers. by Ug K Ug к Mechanical Energy at Halfway Point Mechanical Energy at Release Point Mechanical Energy at Release Point Mechanical Energy at Halfway Point d. c. к Ug Ug K Mechanical Energy at Release Point Mechanical Energy at Halfway Point Mechanical Energy at Release Point Mechanical Energy at Halfway Point
Physics
1 answer:
Tom [10]3 years ago
6 0

Answer:

Initial:   bar  power U₀

Final:    bar  power U = U₀ / 2

             bar Kinetic energy  K = U₀ / 2

These two bars are half the height of the initial bar

Explanation:

To know which graph is correct, let's discuss the solution to the problem

Initial mechanical energy

      Em₀ = U₀ = m g H

The mechanical energy at the midpoint

     Em₂ = K + U₂

As there is no friction, mechanical energy is conserved

     Em₀ = Em₂

     U₀ = K + U₂

     K = U₀ - U₂

     K = m g (H - y₂)

Indicates that position 2 corresponds to y₂ = H / 2

     K = m g (H –H / 2)

     K = ½ m g H

     K = ½ Uo

Therefore the graph must be

Initial:   bar  power U₀

Final:    bar  power U = U₀ / 2

             bar Kinetic energy  K = U₀ / 2

These two bars are half the height of the initial bar

You might be interested in
Your spaceship lands on an unknown planet. to determine the characteristics of this planet, you drop a 1.50 kg wrench from 5.50
Vesnalui [34]
1. calculate the value of acceleration that objects gains in that period of time
•calculating acceleration
5.50 = 1/2at^2
5.50*2/t^2 = a
11.00/0.657 = a
16.74=a
now you got the acceleration
2. you have laws of gravitation for that

g = Gm/r^2
where g is the acceleration value
16.74 = 6.754*10^-11 × m/ 6.28*10^4
105.14*10^4 /6.754*10-11 = m
15.567*10^15 = m
that would be the mass of the planet ...
5 0
3 years ago
Read 2 more answers
Which groups on the periodic table contain metalloids?
N76 [4]
Metalloids are in Group 13 to 16
6 0
3 years ago
Read 2 more answers
You are 12 miles north of your base camp when you begin walking north at a speed of 2mph. what is your location, relative to you
Leona [35]
Http://www.calculator.net/pace-calculator.html?ctype=distance&ctime=05%3A00%3A00&cdistance=5&cdistanceunit=Miles&cpace=02%3A00%3A00&cpaceunit=tpm&printit=0&x=87&y=24 a pace calculator
4 0
3 years ago
What is it about copper that makes it a good conductor
natta225 [31]
It’s because conductors have nearly zero resistance to the flow of electrons that go through them. This leaves the electrons free to move and current can travel with full strength.
6 0
3 years ago
Read 2 more answers
Suppose that Hubble's constant were H0 = 51 km/s/Mly (which is not its actual value). What would the approximate age of the univ
bija089 [108]

Given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.

Given the data in the question;

Hubble's constant; H_0 = 51km/s/Mly

Age of the universe; t = \ ?

We know that, the reciprocal of the Hubble's constant ( H_0 ) gives an estimate of the age of the universe ( t ). It is expressed as:

Age\ of\ Universe; t = \frac{1}{H_0}

Now,

Hubble's constant; H_0 = 51km/s/Mly

We know that;

1\ light\ years = 9.46*10^{15}m

so

1\ Million\ light\ years = [9.46 * 10^{15}m] * 10^6 = 9.46 * 10^{21}m

Therefore;

H_0 = 51\frac{km}{\frac{s}{Mly} } = 51000\frac{m}{s\ *\ Mly}  \\\\H_0 = 51000\frac{m}{s\ *\ (9.46*10^{21}m)} \\\\H_0 =  5.39 *10^{-18}s^{-1}\\

Now, we input this Hubble's constant value into our equation;

Age\ of\ Universe; t = \frac{1}{H_0}\\\\t = \frac{1}{ 5.39 *10^{-18}s^{-1}} \\\\t = 1.855 * 10^{17}s\\\\We\ convert\ to\ years\\\\t =  \frac{ 1.855 * 10^{17}}{60*60*24*365}yrs \\\\t = \frac{ 1.855 * 10^{17}}{31536000}yrs\\\\t = 5.88 *10^9 years

Therefore, given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.

Learn more: brainly.com/question/14019680

6 0
3 years ago
Other questions:
  • 0.013*30A 340 g bird flying along at 6.0 m/s sees a 13 g insect heading straight toward it with a speed of 30 m/s. The bird open
    13·1 answer
  • Which element has 7 valence electrons?
    7·1 answer
  • Which phrase best describes sir isaac newton's contributions to modern science and therefore to the industrial revolution?
    14·1 answer
  • True or False: Once the object hits the water, the forces are balanced and the object will stop. Support your answer with reason
    5·1 answer
  • 8. A baseball is hit upward and travels along a parabolic arc before it strikes the se
    13·1 answer
  • Identify the parts of the wave below. Please help! I need it quite soon!
    14·1 answer
  • Please need help on this one
    12·1 answer
  • What does Rockstrom mean by the need to "bend the curves"?
    9·1 answer
  • 3. Why is the term cold blooded a misconception? Explain​
    8·1 answer
  • If the slump and subsequent flow continue migrating uphill and more material flows downhill, which of the following are a hazard
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!