1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
3

An object initially at rest falls from a height H until it reaches the ground. Two of the following energy bar charts represent

the kinetic energy K and gravitational potential energy Ug of the object-Earth system at two positions. The first position is when the object is initially released, and the second position is when the object is halfway between its release point and the ground. Which two charts could represent the mechanical energy of the object-Earth system? Select two answers. by Ug K Ug к Mechanical Energy at Halfway Point Mechanical Energy at Release Point Mechanical Energy at Release Point Mechanical Energy at Halfway Point d. c. к Ug Ug K Mechanical Energy at Release Point Mechanical Energy at Halfway Point Mechanical Energy at Release Point Mechanical Energy at Halfway Point
Physics
1 answer:
Tom [10]3 years ago
6 0

Answer:

Initial:   bar  power U₀

Final:    bar  power U = U₀ / 2

             bar Kinetic energy  K = U₀ / 2

These two bars are half the height of the initial bar

Explanation:

To know which graph is correct, let's discuss the solution to the problem

Initial mechanical energy

      Em₀ = U₀ = m g H

The mechanical energy at the midpoint

     Em₂ = K + U₂

As there is no friction, mechanical energy is conserved

     Em₀ = Em₂

     U₀ = K + U₂

     K = U₀ - U₂

     K = m g (H - y₂)

Indicates that position 2 corresponds to y₂ = H / 2

     K = m g (H –H / 2)

     K = ½ m g H

     K = ½ Uo

Therefore the graph must be

Initial:   bar  power U₀

Final:    bar  power U = U₀ / 2

             bar Kinetic energy  K = U₀ / 2

These two bars are half the height of the initial bar

You might be interested in
Earth is about 150 million kilometers from the Sun, and the apparent brightness of the Sun in our sky is about 1300 watts/m2. Us
nalin [4]

Answer:

13 W/m^2

Explanation:

The apparent brightness follows an inverse square law, therefore we can write:

I \propto \frac{1}{r^2}

where I is the apparent brightness and r is the distance from the Sun.

We can also rewrite the law as

\frac{I_2}{I_1}=\frac{r_1^2}{r_2^2} (1)

where in this problem, we have:

I_1 = 1300 W/m^2 apparent brightness at a distance r_1, where

r_1 = 150 million km

We want to estimate the apparent brightness at r_2, where r_2 is ten times r_1, so

r_2 = 10 r_1

Re-arranging eq.(1), we find I_2:

I_2 = \frac{r_1^2}{r_2^2}I_1 = \frac{r_1^2}{(10r_1)^2}(1300)=\frac{1}{100}(1300)=13 W/m^2

5 0
3 years ago
collection of such objects we observe that they emit electromagnetic radiation of three different energies: 0.7 eV (infrared), 2
UkoKoshka [18]

It 45 because it has to be this and that and ur gay

4 0
3 years ago
A 2800 kg truck moving at 12 m/s to the right hits a stopped 1100 kg car. What is the combined velocity the moment they stick to
leva [86]

Answer:

The combined velocity is 8.61 m/s.

Explanation:

Given that,

The mass of a truck, m = 2800 kg

Initial speed of truck, u = 12 m/s

The mass of a car, m' = 1100 kg

Initial speed of the car, u' = 0

We need to find the combined velocity the moment they stick together. Let it is V. Using the conservation of momentum.

m_1v_1+m_2v_2=(m_1+m_2)V\\\\V=\dfrac{m_1v_1+m_2v_2}{(m_1+m_2)}\\\\V=\dfrac{2800\times 12+0}{2800+1100}\\\\V=8.61\ m/s

So, the combined velocity is 8.61 m/s.

5 0
3 years ago
4.5 billion km, the average separation between the sun and Neptune (report answer in hours). How long does it take light to trav
Liula [17]

Answer:

t = 4.17 hours

Explanation:

given,

The distance between Sun and Neptune, d = 4.5 billion Km

                                                                         = 4.5 x 10⁹ Km

                                                                          = 4.5 x 10¹¹ m

The velocity of light, c = 3 x 10⁸ m/s

The velocity is always equal to displacement by the time.

                                           <em>V = d / t    m/s</em>

∴                                           t = d / V

                                               = 4.5 x 10¹¹ m / 3 x 10⁸ m/s

                                               = 15,000 s

                                               = 4.17 h

Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h

4 0
3 years ago
The sensor in the torso of a crash test dummy records the magnitude and direction of the net force acting on the dummy.If the du
Sunny_sXe [5.5K]

Here in crash test the two forces are acting on the dummy in two different directions

As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.

So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors

so we can say

F_{net} = \sqrt{F_1^2 + F_2^2}

here given that

F_1 = 130.0 N

F_2 = 4500.0 N

now we will plug in all data in the above equation

F_{net} = \sqrt{4500^2 + 130^}

F_{net} = 4501.9 N

so it will have net force 4501.9 N which will be reported by sensor

4 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the reactance of a 0.5 F capacitor that is connected to a battery with peak voltage 2 V and angular frequency 200 radi
    9·1 answer
  • Science Help Please?? It is believed that solar nebular material came from which of the following:
    11·2 answers
  • Pls help‼️Help me with these questions! :/
    10·1 answer
  • All circular motions are usually periodic but all periodic motions are not circular why
    13·1 answer
  • What is the acceleration of a full bottle of water dropped fron a desk​
    7·1 answer
  • A conductor directly connected to the earth is called a ______.
    11·1 answer
  • Who speaks the line "Lord, what fools these mortals be"?
    8·1 answer
  • "For an object moving at a constant speed, we would expect to see a position graph with a
    15·1 answer
  • 5.
    9·1 answer
  • Why do cars stay in motion.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!