Your answer is C) <span> the potential energy of an object is always greater than its kinetic energy </span>
The value of the underlined 8 is, hundred billion's. Hope this helped!
We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
Answer:
9.01amp
Explanation:
Power = V^2/R
Given that v = 11volts, P = 99watts
99 = 11^2/R
11×11 = 99R
121= 99R
R = 121/99
R= 1.22ohms
From ohms Law; V = IR
11volts = I × 1.22ohms
I = 11/1.23
I = 9.01 amp
The transfer of energy means, in convention process, transport of matter. In this case, hot water has lower density than cool water. The water with less density ascends and leaves gaps that are occupied with cooler water "packages".