Answer:
If all these three charges are positive with a magnitude of
each, the electric potential at the midpoint of segment
would be approximately
.
Explanation:
Convert the unit of the length of each side of this triangle to meters:
.
Distance between the midpoint of
and each of the three charges:
Let
denote Coulomb's constant (
.)
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.
Hence, the electric field at the midpoint of
due to all these three charges would be:
.
The first one would be thermal energy
Overload <<<<<<<<<<<<<<<<<<<<<<<<<<<<<,,,,,,,,
Answer:
All fraction of kinectic energy is lost to barrel of a spring gun of mass 1.8 kg
Explanation:
A ball of mass 0.50 kg is fired with velocity 160 m/s ...
The kinetic energy is given by 1/2mv²
Kinectic energy of the ball = 1/2 *0.5*160²
Kinectic energy = 1/4 *25600
Kinectic energy = 6400 joules.
If no energy is lost to fiction, and the ball sticks to a barrel of a spring gun of mass 1.8 kg with initial velocity zero, all kinetic energy is lost to the barrel of a spring gun of mass 1.8 kg.