The gravitational potential energy will increase by 423.36 J
<h3>How to determine the potential energy at ground level</h3>
- Mass (m) = 72 kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Height (h) = 0 m
- Potential energy at ground level (PE₁) =?
PE = mgh
PE₁ = 72 × 9.8 × 0
PE₁ = 0 J
<h3>How to determine the potential energy at 60 cm (0.6 m)</h3>
- Mass (m) = 72 kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Height (h) = 0.6 m
- Potential energy at 60 cm (0.6 m) (PE₂) =?
PE = mgh
PE₂ = 72 × 9.8 × 0.6
PE₂= 423.36 J
<h3>How to determine the change in potential energy </h3>
- Potential energy at ground level (PE₁) = 0 J
- Potential energy at 60 cm (0.6 m) (PE₂) = 423.36 J
- Change in potential energy =?
Change in potential energy = PE₂ - PE₁
Change in potential energy = 423.36 - 0
Change in potential energy = 423.36 J
Learn more about energy:
brainly.com/question/10703928
#SPJ1
Answer: Impulse = 20 Ns
Explanation:
Impulse is the product of force and time
Also impulse = momentum
Where momentum is the product of mass and velocity.
Given that
M = 2kg
V = 10 m/s
Impulse = MV = 2 × 10 = 20 Ns
Explanation:
F =(frac{1}{4{pi}{varepsilon}_o}) x (frac {q_1q_2}{r^2})
F =(frac {5 {times} 10 {times} 8 {times} 10}{0.002 {times} 0.002}) x 9 x 10
F = 900N
Answer:
Explanation:
correct options
a ) Their electrical potential energy keeps decreasing
Actually as they move apart , their electrical potential energy decreases due to increase of distance between them and kinetic energy increases
so a ) option is correct
b ) Their acceleration keeps decreasing
As they move apart , their mutual force of repulsion decreases due to increase of distance between them so the acceleration decreases .
c ) c. Their kinetic energy keeps increasing
Their kinetic energy increases because their electrical potential energy decreases . Conservation of energy law will apply .